scispace - formally typeset
Search or ask a question
Author

Gary A. Silverman

Bio: Gary A. Silverman is an academic researcher from Washington University in St. Louis. The author has contributed to research in topics: Serpin & Caenorhabditis elegans. The author has an hindex of 41, co-authored 131 publications receiving 12186 citations. Previous affiliations of Gary A. Silverman include University of Pittsburgh & Washington & Jefferson College.


Papers
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
TL;DR: Serpins are a broadly distributed family of protease inhibitors that use a conformational change to inhibit target enzymes, central in controlling many important proteolytic cascades, including the mammalian coagulation pathways.
Abstract: Serpins are a broadly distributed family of protease inhibitors that use a conformational change to inhibit target enzymes They are central in controlling many important proteolytic cascades, including the mammalian coagulation pathways Serpins are conformationally labile and many of the disease-linked mutations of serpins result in misfolding or in pathogenic, inactive polymers

601 citations

Journal ArticleDOI
16 Jun 1989-Science
TL;DR: Two single-copy genes have now been cloned from a library of yeast artificial chromosome clones that was prepared from total human DNA, and appear to contain faithful replicas of human DNA.
Abstract: A recently developed cloning system based on the propagation of large DNA molecules as linear, artificial chromosomes in the yeast Saccharomyces cerevisiae provides a potential method of cloning the entire human genome in segments of several hundred kilobase pairs. Most application of this system will require the ability to recover specific sequences from libraries of yeast artificial chromosome clones and to propagate these sequences in yeast without alterations. Two single-copy genes have now been cloned from a library of yeast artificial chromosome clones that was prepared from total human DNA. Multiple, independent isolates were obtained of the genes encoding factor IX and plasminogen activator inhibitor type 2. The clones, which ranged in size from 60 to 650 kilobases, were stable on prolonged propagation in yeast and appear to contain faithful replicas of human DNA.

299 citations

Journal ArticleDOI
TL;DR: The data suggest that mammalian serpins, in general, utilize their dynamic tertiary structure to trap proteinases from more than one mechanistic class and that SCCA1, in particular, may be involved in a novel inhibitory pathway aimed at regulating a powerful array of lysosomal cysteine proteinases.
Abstract: The human squamous cell carcinoma antigens (SCCA) 1 and 2 are tandemly arrayed genes that encode two high-molecular-weight serine proteinase inhibitors (serpins). Although these proteins are 92% identical, differences in their reactive site loops suggest that they inhibit different types of proteinases. Our previous studies show that SCCA2 inhibits chymotrypsin-like serine proteinases [Schick et al. (1997) J. Biol. Chem. 272, 1849-1855]. We now show that, unlike SCCA2, SCCA1 lacks inhibitory activity against any of the more common types of serine proteinases but is a potent cross-class inhibitor of the archetypal lysosomal cysteine proteinases cathepsins K, L, and S. Kinetic analysis revealed that SCCA1 interacted with cathepsins K, L, and S at 1:1 stoichiometry and with second-order rate constants >/= 1 x 10(5) M-1 s-1. These rate constants were comparable to those obtained with the prototypical physiological cysteine proteinase inhibitor, cystatin C. Also relative to cystatin C, SCCA1 was a more potent inhibitor of cathepsin K-mediated elastolytic activity by forming longer lived inhibitor-proteinase complexes. The t1/2 of SCCA1-cathepsin S complexes was >1155 min, whereas that of cystatin C-cathepsin complexes was 55 min. Cleavage between the Gly and Ser residues of the reactive site loop and detection of a stable SCCA1-cathepsin S complex by sodium dodecyl sulfate-polyacrylamide gel electrophoresis suggested that the serpin interacted with the cysteine proteinase in a manner similar to that observed for typical serpin-serine proteinase interactions. These data suggest that, contingent upon their reactive site loop sequences, mammalian serpins, in general, utilize their dynamic tertiary structure to trap proteinases from more than one mechanistic class and that SCCA1, in particular, may be involved in a novel inhibitory pathway aimed at regulating a powerful array of lysosomal cysteine proteinases.

282 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

4,316 citations

Journal Article
TL;DR: The international index and the age-adjusted international index should be used in the design of future therapeutic trials in patients with aggressive non-Hodgkin's lymphoma and in the selection of appropriate therapeutic approaches for individual patients.
Abstract: BACKGROUND Although many patients with intermediate-grade or high-grade (aggressive) non-Hodgkin's lymphoma are cured by combination chemotherapy, the remainder are not cured and ultimately die of their disease. The Ann Arbor classification, used to determine the stage of this disease, does not consistently distinguish between patients with different long-term prognoses. This project was undertaken to develop a model for predicting outcome in patients with aggressive non-Hodgkin's lymphoma on the basis of the patients' clinical characteristics before treatment. METHODS Adults with aggressive non-Hodgkin's lymphoma from 16 institutions and cooperative groups in the United States, Europe, and Canada who were treated between 1982 and 1987 with combination-chemotherapy regimens containing doxorubicin were evaluated for clinical features predictive of overall survival and relapse-free survival. Features that remained independently significant in step-down regression analyses of survival were incorporated into models that identified groups of patients of all ages and groups of patients no more than 60 years old with different risks of death. RESULTS In 2031 patients of all ages, our model, based on age, tumor stage, serum lactate dehydrogenase concentration, performance status, and number of extranodal disease sites, identified four risk groups with predicted five-year survival rates of 73 percent, 51 percent, 43 percent, and 26 percent. In 1274 patients 60 or younger, an age-adjusted model based on tumor stage, lactate dehydrogenase level, and performance status identified four risk groups with predicted five-year survival rates of 83 percent, 69 percent, 46 percent, and 32 percent. In both models, the increased risk of death was due to both a lower rate of complete responses and a higher rate of relapse from complete response. These two indexes, called the international index and the age-adjusted international index, were significantly more accurate than the Ann Arbor classification in predicting long-term survival. CONCLUSIONS The international index and the age-adjusted international index should be used in the design of future therapeutic trials in patients with aggressive non-Hodgkin's lymphoma and in the selection of appropriate therapeutic approaches for individual patients.

4,310 citations

Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Ilio Vitale3, Stuart A. Aaronson4  +183 moreInstitutions (111)
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Abstract: Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

3,301 citations

Journal ArticleDOI
08 Sep 1989-Science
TL;DR: Several transcribed sequences and conserved segments were identified in this cloned region and one corresponds to the cystic fibrosis gene and spans approximately 250,000 base pairs of genomic DNA.
Abstract: An understanding of the basic defect in the inherited disorder cystic fibrosis requires cloning of the cystic fibrosis gene and definition of its protein product. In the absence of direct functional information, chromosomal map position is a guide for locating the gene. Chromosome walking and jumping and complementary DNA hybridization were used to isolate DNA sequences, encompassing more than 500,000 base pairs, from the cystic fibrosis region on the long arm of human chromosome 7. Several transcribed sequences and conserved segments were identified in this cloned region. One of these corresponds to the cystic fibrosis gene and spans approximately 250,000 base pairs of genomic DNA.

3,050 citations

Journal ArticleDOI
TL;DR: Current analyses of genetic defects in Drosophila melanogaster, mice, and humans confirm most of these activities in vivo and identify additional processes that involve cell surface heparan sulfate proteoglycans.
Abstract: The heparan sulfate on the surface of all adherent cells modulates the actions of a large number of extracellular ligands. Members of both cell surface heparan sulfate proteoglycan families, the transmembrane syndecans and the glycosylphosphoinositide-linked glypicans, bind these ligands and enhance formation of their receptor-signaling complexes. These heparan sulfate proteoglycans also immobilize and regulate the turnover of ligands that act at the cell surface. The extracellular domains of these proteoglycans can be shed from the cell surface, generating soluble heparan sulfate proteoglycans that can inhibit interactions at the cell surface. Recent analyses of genetic defects in Drosophila melanogaster, mice, and humans confirm most of these activities in vivo and identify additional processes that involve cell surface heparan sulfate proteoglycans. This chapter focuses on the mechanisms underlying these activities and on the cellular functions that they regulate.

2,680 citations