scispace - formally typeset
Search or ask a question
Author

Gary D. Egbert

Bio: Gary D. Egbert is an academic researcher from Oregon State University. The author has contributed to research in topics: Altimeter & Internal tide. The author has an hindex of 52, co-authored 175 publications receiving 13755 citations. Previous affiliations of Gary D. Egbert include University of Washington & National Oceanic and Atmospheric Administration.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a relocatable system for generalized inverse (GI) modeling of barotropic ocean tides is described, where the GI penalty functional is minimized using a representer method, which requires repeated solution of the forward and adjoint linearized shallow water equations.
Abstract: A computationally efficient relocatable system for generalized inverse (GI) modeling of barotropic ocean tides is described. The GI penalty functional is minimized using a representer method, which requires repeated solution of the forward and adjoint linearized shallow water equations (SWEs). To make representer computations efficient, the SWEs are solved in the frequency domain by factoring the coefficient matrix for a finite-difference discretization of the second-order wave equation in elevation. Once this matrix is factored representers can be calculated rapidly. By retaining the first-order SWE system (defined in terms of both elevations and currents) in the definition of the discretized GI penalty functional, complete generality in the choice of dynamical error covariances is retained. This allows rational assumptions about errors in the SWE, with soft momentum balance constraints (e.g., to account for inaccurate parameterization of dissipation), but holds mass conservation constraints. Wh...

3,133 citations

Journal ArticleDOI
Abstract: Altimetric data from the TOPEX/POSEIDON mission will be used for studies of global ocean circulation and marine geophysics. However, it is first necessary to remove the ocean tides, which are aliased in the raw data. The tides are constrained by the two distinct types of information: the hydrodynamic equations which the tidal fields of elevations and velocities must satisfy, and direct observational data from tide gauges and satellite altimetry. Here we develop and apply a generalized inverse method, which allows us to combine rationally all of this information into global tidal fields best fitting both the data and the dynamics, in a least squares sense. The resulting inverse solution is a sum of the direct solution to the astronomically forced Laplace tidal equations and a linear combination of the representers for the data functionals. The representer functions (one for each datum) are determined by the dynamical equations, and by our prior estimates of the statistics or errors in these equations. Our major task is a direct numerical calculation of these representers. This task is computationally intensive, but well suited to massively parallel processing. By calculating the representers we reduce the full (infinite dimensional) problem to a relatively low-dimensional problem at the outset, allowing full control over the conditioning and hence the stability of the inverse solution. With the representers calculated we can easily update our model as additional TOPEX/POSEIDON data become available. As an initial illustration we invert harmonic constants from a set of 80 open-ocean tide gauges. We then present a practical scheme for direct inversion of TOPEX/POSEIDON crossover data. We apply this method to 38 cycles of geophysical data records (GDR) data, computing preliminary global estimates of the four principal tidal constituents, M(sub 2), S(sub 2), K(sub 1) and O(sub 1). The inverse solution yields tidal fields which are simultaneously smoother, and in better agreement with altimetric and ground truth data, than previously proposed tidal models. Relative to the 'default' tidal corrections provided with the TOPEX/POSEIDON GDR, the inverse solution reduces crossover difference variances significantly (approximately 20-30%), even though only a small number of free parameters (approximately equal to 1000) are actually fit to the crossover data.

1,249 citations

Journal ArticleDOI
15 Jun 2000-Nature
TL;DR: Satellite altimeter data from Topex/Poseidon is used to map empirically the tidal energy dissipation and shows that approximately 1012 watts—that is, 1 TW, representing 25–30% of the total dissipation—occurs in the deep ocean, generally near areas of rough topography.
Abstract: How and where the ocean tides dissipate their energy are long-standing questions that have consequences ranging from the history of the Moon to the mixing of the oceans. Historically, the principal sink of tidal energy has been thought to be bottom friction in shallow seas. There has long been suggestive evidence, however, that tidal dissipation also occurs in the open ocean through the scattering by ocean-bottom topography of surface tides into internal waves, but estimates of the magnitude of this possible sink have varied widely. Here we use satellite altimeter data from Topex/Poseidon to map empirically the tidal energy dissipation. We show that approximately 10(12) watts--that is, 1 TW, representing 25-30% of the total dissipation--occurs in the deep ocean, generally near areas of rough topography. Of the estimated 2 TW of mixing energy required to maintain the large-scale thermohaline circulation of the ocean, one-half could therefore be provided by the tides, with the other half coming from action on the surface of the ocean.

726 citations

Journal ArticleDOI
TL;DR: In this paper, a general mathematical framework for Jacobian computations arising in electromagnetic (EM) geophysical inverse problems is developed, which is based on the discrete formulation of the forward problem and divides computations into components (data functionals, forward and adjoint solvers, model parameter mappings).
Abstract: SUMMARY The Jacobian of the non-linear mapping from model parameters to observations is a key component in all gradient-based inversion methods, including variants on Gauss–Newton and non-linear conjugate gradients. Here, we develop a general mathematical framework for Jacobian computations arising in electromagnetic (EM) geophysical inverse problems. Our analysis, which is based on the discrete formulation of the forward problem, divides computations into components (data functionals, forward and adjoint solvers, model parameter mappings), and clarifies dependencies among these elements within realistic numerical inversion codes. To be concrete, we focus much of the specific discussion on 2-D and 3-D magnetotelluric (MT) inverse problems, but our analysis is applicable to a wide range of active and passive source EM methods. The general theory developed here provides the basis for development of a modular system of computer codes for inversion of EM geophysical data, which we summarize at the end of the paper.

563 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that all of the statistical assumptions usually used in estimating transfer functions for geomagnetic induction data fail at periods from 5 min to several hours at Geomagnetic mid-latitudes.
Abstract: Summary. We show, through an examination of residuals, that all of the statistical assumptions usually used in estimating transfer functions for geomagnetic induction data fail at periods from 5 min to several hours at geomagnetic mid-latitudes. This failure can be traced to the finite spatial scale of many sources. In the past, workers have tried to deal with this problem by hand selecting data segments thought to be free of source effects. We propose an automatic robust analysis scheme which accounts for the systematic increase of errors with increasing power and which automatically downweights source contaminated outliers. We demonstrate that, in contrast to ordinary least squares, this automatic procedure consistently yields reliable transfer function estimates with realistic errors.

561 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a relocatable system for generalized inverse (GI) modeling of barotropic ocean tides is described, where the GI penalty functional is minimized using a representer method, which requires repeated solution of the forward and adjoint linearized shallow water equations.
Abstract: A computationally efficient relocatable system for generalized inverse (GI) modeling of barotropic ocean tides is described. The GI penalty functional is minimized using a representer method, which requires repeated solution of the forward and adjoint linearized shallow water equations (SWEs). To make representer computations efficient, the SWEs are solved in the frequency domain by factoring the coefficient matrix for a finite-difference discretization of the second-order wave equation in elevation. Once this matrix is factored representers can be calculated rapidly. By retaining the first-order SWE system (defined in terms of both elevations and currents) in the definition of the discretized GI penalty functional, complete generality in the choice of dynamical error covariances is retained. This allows rational assumptions about errors in the SWE, with soft momentum balance constraints (e.g., to account for inaccurate parameterization of dissipation), but holds mass conservation constraints. Wh...

3,133 citations

Journal ArticleDOI
TL;DR: In this article, a new solution for the astronomical computation of the insolation quantities on Earth spanning from −250 m to 250 m was presented, where the most regular components of the orbital solution could still be used over a much longer time span, which is why they provided here the solution over 250 m.
Abstract: We present here a new solution for the astronomical computation of the insolation quantities on Earth spanning from -250 Myr to 250 Myr. This solution has been improved with respect to La93 (Laskar et al. [CITE]) by using a direct integration of the gravitational equations for the orbital motion, and by improving the dissipative contributions, in particular in the evolution of the Earth–Moon System. The orbital solution has been used for the calibration of the Neogene period (Lourens et al. [CITE]), and is expected to be used for age calibrations of paleoclimatic data over 40 to 50 Myr, eventually over the full Palaeogene period (65 Myr) with caution. Beyond this time span, the chaotic evolution of the orbits prevents a precise determination of the Earth's motion. However, the most regular components of the orbital solution could still be used over a much longer time span, which is why we provide here the solution over 250 Myr. Over this time interval, the most striking feature of the obliquity solution, apart from a secular global increase due to tidal dissipation, is a strong decrease of about 0.38 degree in the next few millions of years, due to the crossing of the resonance (Laskar et al. [CITE]). For the calibration of the Mesozoic time scale (about 65 to 250 Myr), we propose to use the term of largest amplitude in the eccentricity, related to , with a fixed frequency of /yr, corresponding to a period of 405 000 yr. The uncertainty of this time scale over 100 Myr should be about , and over the full Mesozoic era.

2,992 citations

Book
01 Nov 2002
TL;DR: A comprehensive text and reference work on numerical weather prediction, first published in 2002, covers not only methods for numerical modeling, but also the important related areas of data assimilation and predictability.
Abstract: This comprehensive text and reference work on numerical weather prediction, first published in 2002, covers not only methods for numerical modeling, but also the important related areas of data assimilation and predictability. It incorporates all aspects of environmental computer modeling including an historical overview of the subject, equations of motion and their approximations, a modern and clear description of numerical methods, and the determination of initial conditions using weather observations (an important science known as data assimilation). Finally, this book provides a clear discussion of the problems of predictability and chaos in dynamical systems and how they can be applied to atmospheric and oceanic systems. Professors and students in meteorology, atmospheric science, oceanography, hydrology and environmental science will find much to interest them in this book, which can also form the basis of one or more graduate-level courses.

2,240 citations

Journal ArticleDOI
TL;DR: Using the Levitus climatology, the authors showed that 2.1 TW (terawatts) is required to maintain the global abyssal density distribution against 30 Sverdrups of deep water formation.

1,958 citations

Journal ArticleDOI
TL;DR: This monograph is an outstanding monograph on current research on skewelliptical models and its generalizations and does an excellent job presenting the depth of methodological research as well as the breath of application regimes.
Abstract: (2005). Atmospheric Modeling, Data Assimilation, and Predictability. Technometrics: Vol. 47, No. 4, pp. 521-521.

1,580 citations