scispace - formally typeset
Search or ask a question
Author

Gary S. Was

Bio: Gary S. Was is an academic researcher from University of Michigan. The author has contributed to research in topics: Grain boundary & Stress corrosion cracking. The author has an hindex of 56, co-authored 474 publications receiving 14795 citations. Previous affiliations of Gary S. Was include Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the three major materials challenges for the current and next generation of water-cooled fission reactors are centered on two structural materials aging degradation issues (corrosion and stress corrosion cracking of structural materials and neutron-induced embrittlement of reactor pressure vessels), along with improved fuel system reliability and accident tolerance issues.

1,633 citations

Journal ArticleDOI
TL;DR: The SRIM (formerly TRIM) Monte Carlo simulation code is widely used to compute a number of parameters relevant to ion beam implantation and ion beam processing of materials as discussed by the authors.
Abstract: The SRIM (formerly TRIM) Monte Carlo simulation code is widely used to compute a number of parameters relevant to ion beam implantation and ion beam processing of materials. It also has the capability to compute a common radiation damage exposure unit known as atomic displacements per atom (dpa). Since dpa is a standard measure of primary radiation damage production, most researchers who employ ion beams as a tool for inducing radiation damage in materials use SRIM to determine the dpa associated with their irradiations. The use of SRIM for this purpose has been evaluated and comparisons have been made with an internationally-recognized standard definition of dpa, as well as more detailed atomistic simulations of atomic displacement cascades. Differences between the standard and SRIM-based dpa are discussed and recommendations for future usage of SRIM in radiation damage studies are made. In particular, it is recommended that when direct comparisons between ion and neutron data are intended, the Kinchin–Pease option of SRIM should be selected.

1,097 citations

Book
13 Jul 2016
TL;DR: Part I Radiation Damage: The Radiation Damage Event, Displacement of Atoms, Damage Cascade, Point Defect Formation and Diffusion, and Damage Cascade as mentioned in this paper, Part II Physical Effects of Radiation Damage, 6 Radiation-Induced Segregation, 7 Dislocation Microstructure, 8 Irradiation-induced Voids and Bubbles, 9 Phase Stability Under Irradiated, Unique Effects of Ion Irradiations, 11 Simulation of Neutron IRradiation Effects with Ions, and Part III Mechanical Effects of radiation Damage.
Abstract: Part I Radiation Damage -- 1 The Radiation Damage Event -- 2 The Displacement of Atoms -- 3 The Damage Cascade -- 4 Point Defect Formation and Diffusion -- 5 Radiation-Enhanced and Diffusion Defect Reaction Rate Theory -- Part II Physical Effects of Radiation Damage -- 6 Radiation-Induced Segregation -- 7 Dislocation Microstructure -- 8 Irradiation-Induced Voids and Bubbles -- 9 Phase Stability Under Irradiation -- 10 Unique Effects of Ion Irradiation -- 11 Simulation of Neutron Irradiation Effects with Ions -- Part III Mechanical Effects of Radiation Damage -- 12 Irradiation Hardening and Deformation -- 13 Irradiation Creep and Growth -- 14 Fracture and Embrittlement -- 15 Corrosion and Stress Corrosion Cracking Fundamentals -- 16 Effects of Irradiation on Corrosion and Environmentally Assisted Cracking -- Index. .

949 citations

Book
01 Jan 2007
TL;DR: The first € price and the £ and $ price are net prices, subject to local VAT as discussed by the authors, and the first £ and £ price is net price subject to £ and US VAT.
Abstract: The first € price and the £ and $ price are net prices, subject to local VAT. Prices indicated with * include VAT for books; the €(D) includes 7% for Germany, the €(A) includes 10% for Austria. Prices indicated with ** include VAT for electronic products; 19% for Germany, 20% for Austria. All prices exclusive of carriage charges. Prices and other details are subject to change without notice. All errors and omissions excepted. G.S. Was Fundamentals of Radiation Materials Science

665 citations

Journal ArticleDOI
TL;DR: In this article, the current understanding of the response of candidate materials for SCWR systems, focusing on the corrosion and stress corrosion cracking response, and highlights the design trade-offs associated with certain alloy systems.

353 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
10 Mar 1970

8,159 citations

Journal ArticleDOI
TL;DR: The concept of high entropy introduces a new path of developing advanced materials with unique properties, which cannot be achieved by the conventional micro-alloying approach based on only one dominant element as mentioned in this paper.

4,394 citations

Journal ArticleDOI
TL;DR: In this article, the indentation size effect for crystalline materials can be accurately modeled using the concept of geometrically necessary dislocations, which leads to the following characteristic form for the depth dependence of the hardness: H H 0 1+ h ∗ h where H is the hardness for a given depth of indentation, h, H 0 is a characteristic length that depends on the shape of the indenter, the shear modulus and H 0.
Abstract: We show that the indentation size effect for crystalline materials can be accurately modeled using the concept of geometrically necessary dislocations. The model leads to the following characteristic form for the depth dependence of the hardness: H H 0 1+ h ∗ h where H is the hardness for a given depth of indentation, h, H0 is the hardness in the limit of infinite depth and h ∗ is a characteristic length that depends on the shape of the indenter, the shear modulus and H0. Indentation experiments on annealed (111) copper single crystals and cold worked polycrystalline copper show that this relation is well-obeyed. We also show that this relation describes the indentation size effect observed for single crystals of silver. We use this model to derive the following law for strain gradient plasticity: ( σ σ 0 ) 2 = 1 + l χ , where σ is the effective flow stress in the presence of a gradient, σ0 is the flow stress in the absence of a gradient, χ is the effective strain gradient and l a characteristic material length scale, which is, in turn, related to the flow stress of the material in the absence of a strain gradient, l ≈ b( μ σ 0 ) 2 . For materials characterized by the power law σ 0 = σ ref e 1 n , the above law can be recast in a form with a strain-independent material length scale l. ( builtσ σ ref ) 2 = e 2 n + l χ l = b( μ σ ref ) 2 = l ( σ 0 σ ref ) 2 . This law resembles the phenomenological law developed by Fleck and Hutchinson, with their phenomenological length scale interpreted in terms of measurable material parametersbl].

3,655 citations

Journal ArticleDOI
TL;DR: The current understanding of the fundamentals of recrystallization is summarized in this paper, which includes understanding the as-deformed state, nucleation and growth, the development of misorientation during deformation, continuous, dynamic, and geometric dynamic recystallization, particle effects, and texture.
Abstract: The current understanding of the fundamentals of recrystallization is summarized. This includes understanding the as-deformed state. Several aspects of recrystallization are described: nucleation and growth, the development of misorientation during deformation, continuous, dynamic, and geometric dynamic recrystallization, particle effects, and texture. This article is authored by the leading experts in these areas. The subjects are discussed individually and recommendations for further study are listed in the final section.

1,797 citations