scispace - formally typeset
Search or ask a question
Author

Gary Strand

Bio: Gary Strand is an academic researcher from National Center for Atmospheric Research. The author has contributed to research in topics: Climate model & Workflow. The author has an hindex of 7, co-authored 14 publications receiving 1791 citations. Previous affiliations of Gary Strand include University Corporation for Atmospheric Research.

Papers
More filters
Journal ArticleDOI
TL;DR: The Community Earth System Model (CESM) community designed the CESM Large Ensemble with the explicit goal of enabling assessment of climate change in the presence of internal climate variability as discussed by the authors.
Abstract: While internal climate variability is known to affect climate projections, its influence is often underappreciated and confused with model error. Why? In general, modeling centers contribute a small number of realizations to international climate model assessments [e.g., phase 5 of the Coupled Model Intercomparison Project (CMIP5)]. As a result, model error and internal climate variability are difficult, and at times impossible, to disentangle. In response, the Community Earth System Model (CESM) community designed the CESM Large Ensemble (CESM-LE) with the explicit goal of enabling assessment of climate change in the presence of internal climate variability. All CESM-LE simulations use a single CMIP5 model (CESM with the Community Atmosphere Model, version 5). The core simulations replay the twenty to twenty-first century (1920–2100) 30 times under historical and representative concentration pathway 8.5 external forcing with small initial condition differences. Two companion 1000+-yr-long preindu...

1,869 citations

Journal ArticleDOI
TL;DR: In this article, an ensemble of simulations with the Community Earth System Model (CESM) for the period 850-2005 (the CESM Last Millennium Ensemble, or CESM-LME) is now available to the community.
Abstract: The climate of the past millennium provides a baseline for understanding the background of natural climate variability upon which current anthropogenic changes are superimposed. As this period also contains high data density from proxy sources (e.g., ice cores, stalagmites, corals, tree rings, and sediments), it provides a unique opportunity for understanding both global and regional-scale climate responses to natural forcing. Toward that end, an ensemble of simulations with the Community Earth System Model (CESM) for the period 850–2005 (the CESM Last Millennium Ensemble, or CESM-LME) is now available to the community. This ensemble includes simulations forced with the transient evolution of solar intensity, volcanic emissions, greenhouse gases, aerosols, land-use conditions, and orbital parameters, both together and individually. The CESM-LME thus allows for evaluation of the relative contributions of external forcing and internal variability to changes evident in the paleoclimate data record, a...

337 citations

Journal ArticleDOI
TL;DR: In this article, the community climate system model version 3.0 (CCSM3) was used to simulate the Twenty-First Century Arctic climate change in three emission scenarios (A2, A1B and B1) using eight or five ensemble members.
Abstract: Arctic climate change in the Twenty-first century is simulated by the Community Climate System Model version 3.0 (CCSM3). The simulations from three emission scenarios (A2, A1B and B1) are analyzed using eight (A1B and B1) or five (A2) ensemble members. The model simulates a reasonable present-day climate and historical climate trend. The model projects a decline of sea-ice extent in the range of 1.4–3.9% per decade and 4.8–22.2% per decade in winter and summer, respectively, corresponding to the range of forcings that span the scenarios. At the end of the Twenty-first century, the winter and summer Arctic mean surface air temperature increases in a range of 4–14°C (B1 and A2) and 0.7–5°C (B1 and A2) relative to the end of the Twentieth century. The Arctic becomes ice-free during summer at the end of the Twenty-first century in the A2 scenario. Similar to the observations, the Arctic Oscillation (AO) is the dominant factor in explaining the variability of the atmosphere and sea ice in the 1870–1999 historical runs. The AO shifts to the positive phase in response to greenhouse gas forcings in the Twenty-first century. But the simulated trends in both Arctic mean sea-level pressure and the AO index are smaller than what has been observed. The Twenty-first century Arctic warming mainly results from the radiative forcing of greenhouse gases. The 1st empirical orthogonal function (explains 72.2–51.7% of the total variance) of the wintertime surface air temperature during 1870–2099 is characterized by a strong warming trend and a “polar amplification”-type of spatial pattern. The AO, which plays a secondary role, contributes to less than 10% of the total variance in both surface temperature and sea-ice concentration.

22 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used five state-of-the-art prediction systems that have been initialized with the observed state before volcanic aerosols are introduced to predict the impacts of tropical volcanic eruptions.
Abstract: Major tropical volcanic eruptions have a large impact on climate, but there have only been three major eruptions during the recent relatively well-observed period. Models are therefore an important tool to understand and predict the impacts of an eruption. This study uses five state-of-the-art decadal prediction systems that have been initialized with the observed state before volcanic aerosols are introduced. The impact of the volcanic aerosols is found by subtracting the results of a reference experiment where the volcanic aerosols are omitted. We look for the robust impact across models and volcanoes by combining all the experiments, which helps reveal a signal even if it is weak in the models. The models used in this study simulate realistic levels of warming in the stratosphere, but zonal winds are weaker than the observations. As a consequence, models can produce a pattern similar to the North Atlantic Oscillation in the first winter following the eruption, but the response and impact on surface temperatures is weaker than in observations. Reproducing the pattern, but not the amplitude, may be related to a known model error. There are also impacts in the Pacific and Atlantic Oceans. This work contributes towards improving the interpretation of decadal predictions in the case of a future large tropical volcanic eruption.

19 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented simulations of 21st century climate with Community Earth System Model version 2 (CESM2) using the standard atmosphere (CAM6) and the latest generation of the Whole Atmosphere Community Climate Model (WACCM6), denoted CESM2(WACCAN6), and a survey of general results is described.
Abstract: Simulations of 21st century climate with Community Earth System Model version 2 (CESM2) using the standard atmosphere (CAM6), denoted CESM2(CAM6), and the latest generation of the Whole Atmosphere Community Climate Model (WACCM6), denoted CESM2(WACCM6), are presented, and a survey of general results is described. The equilibrium climate sensitivity (ECS) of CESM2(CAM6) is 5.3°C, and CESM2(WACCM6) is 4.8°C, while the transient climate response (TCR) is 2.1°C in CESM2(CAM6) and 2.0°C in CESM2(WACCM6). Thus, these two CESM2 model versions have higher values of ECS than the previous generation of model, the CESM(CAM5) (hereafter CESM1), that had an ECS of 4.1°C, while the CESM1 value of TCR was 2.3°C. Though the previous generation Representative Concentration

17 citations


Cited by
More filters
Journal Article
TL;DR: In this paper, a documento: "Cambiamenti climatici 2007: impatti, adattamento e vulnerabilita" voteato ad aprile 2007 dal secondo gruppo di lavoro del Comitato Intergovernativo sui Cambiamentsi Climatici (Intergovernmental Panel on Climate Change).
Abstract: Impatti, adattamento e vulnerabilita Le cause e le responsabilita dei cambiamenti climatici sono state trattate sul numero di ottobre della rivista Cda. Approfondiamo l’argomento presentando il documento: “Cambiamenti climatici 2007: impatti, adattamento e vulnerabilita” votato ad aprile 2007 dal secondo gruppo di lavoro del Comitato Intergovernativo sui Cambiamenti Climatici (Intergovernmental Panel on Climate Change). Si tratta del secondo di tre documenti che compongono il quarto rapporto sui cambiamenti climatici.

3,979 citations

Journal ArticleDOI
TL;DR: This paper found that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm and that anthropogenic warming is increasing the probability of co-occurring warm-dry conditions like those that have created the acute human and ecosystem impacts associated with the 2012-2014 drought in California.
Abstract: California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ∼100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm–dry conditions like those that have created the acute human and ecosystem impacts associated with the “exceptional” 2012–2014 drought in California.

980 citations

Journal ArticleDOI
TL;DR: The Community Earth System Model Version 2 (CESM2) as discussed by the authors is the most recent version of the Coupled Model Intercomparison Project (CMEI) coupled model.
Abstract: An overview of the Community Earth System Model Version 2 (CESM2) is provided, including a discussion of the challenges encountered during its development and how they were addressed. In addition, an evaluation of a pair of CESM2 long preindustrial control and historical ensemble simulations is presented. These simulations were performed using the nominal 1° horizontal resolution configuration of the coupled model with both the “low-top” (40 km, with limited chemistry) and “high-top” (130 km, with comprehensive chemistry) versions of the atmospheric component. CESM2 contains many substantial science and infrastructure improvements and new capabilities since its previous major release, CESM1, resulting in improved historical simulations in comparison to CESM1 and available observations. These include major reductions in low-latitude precipitation and shortwave cloud forcing biases; better representation of the Madden-Julian Oscillation; better El Nino-Southern Oscillation-related teleconnections; and a global land carbon accumulation trend that agrees well with observationally based estimates. Most tropospheric and surface features of the low- and high-top simulations are very similar to each other, so these improvements are present in both configurations. CESM2 has an equilibrium climate sensitivity of 5.1–5.3 °C, larger than in CESM1, primarily due to a combination of relatively small changes to cloud microphysics and boundary layer parameters. In contrast, CESM2's transient climate response of 1.9–2.0 °C is comparable to that of CESM1. The model outputs from these and many other simulations are available to the research community, and they represent CESM2's contributions to the Coupled Model Intercomparison Project Phase 6.

884 citations

Journal ArticleDOI
TL;DR: In this article, the Pacific decadal oscillation (PDO) is not a single phenomenon, but is instead the result of a combination of different physical processes, including remote tropical forcing and local North Pacific atmosphere-ocean interactions, which operate on different time scales to drive similar PDO-like SST anomaly patterns.
Abstract: The Pacific decadal oscillation (PDO), the dominant year-round pattern of monthly North Pacific sea surface temperature (SST) variability, is an important target of ongoing research within the meteorological and climate dynamics communities and is central to the work of many geologists, ecologists, natural resource managers, and social scientists. Research over the last 15 years has led to an emerging consensus: the PDO is not a single phenomenon, but is instead the result of a combination of different physical processes, including both remote tropical forcing and local North Pacific atmosphere–ocean interactions, which operate on different time scales to drive similar PDO-like SST anomaly patterns. How these processes combine to generate the observed PDO evolution, including apparent regime shifts, is shown using simple autoregressive models of increasing spatial complexity. Simulations of recent climate in coupled GCMs are able to capture many aspects of the PDO, but do so based on a balance of ...

874 citations

Journal ArticleDOI
TL;DR: Simple extrapolation of the quadratic implies global mean sea level could rise 65 ± 12 cm by 2100 compared with 2005, roughly in agreement with the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5) model projections.
Abstract: Using a 25-y time series of precision satellite altimeter data from TOPEX/Poseidon, Jason-1, Jason-2, and Jason-3, we estimate the climate-change-driven acceleration of global mean sea level over the last 25 y to be 0.084 ± 0.025 mm/y2 Coupled with the average climate-change-driven rate of sea level rise over these same 25 y of 2.9 mm/y, simple extrapolation of the quadratic implies global mean sea level could rise 65 ± 12 cm by 2100 compared with 2005, roughly in agreement with the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5) model projections.

671 citations