scispace - formally typeset
Search or ask a question
Author

Gary Van Domselaar

Other affiliations: University of Alberta, Health Canada, University of Manitoba  ...read more
Bio: Gary Van Domselaar is an academic researcher from Public Health Agency of Canada. The author has contributed to research in topics: Medicine & Epitope. The author has an hindex of 36, co-authored 101 publications receiving 5000 citations. Previous affiliations of Gary Van Domselaar include University of Alberta & Health Canada.
Topics: Medicine, Epitope, Virus, Neuraminidase, Microbiome


Papers
More filters
Journal ArticleDOI
TL;DR: A new Resistomes & Variants module provides analysis and statistical summary of in silico predicted resistance variants from 82 pathogens and over 100 000 genomes, able to summarize predicted resistance using the information included in CARD, identify trends in AMR mobility and determine previously undescribed and novel resistance variants.
Abstract: The Comprehensive Antibiotic Resistance Database (CARD; https://card.mcmaster.ca) is a curated resource providing reference DNA and protein sequences, detection models and bioinformatics tools on the molecular basis of bacterial antimicrobial resistance (AMR). CARD focuses on providing high-quality reference data and molecular sequences within a controlled vocabulary, the Antibiotic Resistance Ontology (ARO), designed by the CARD biocuration team to integrate with software development efforts for resistome analysis and prediction, such as CARD's Resistance Gene Identifier (RGI) software. Since 2017, CARD has expanded through extensive curation of reference sequences, revision of the ontological structure, curation of over 500 new AMR detection models, development of a new classification paradigm and expansion of analytical tools. Most notably, a new Resistomes & Variants module provides analysis and statistical summary of in silico predicted resistance variants from 82 pathogens and over 100 000 genomes. By adding these resistance variants to CARD, we are able to summarize predicted resistance using the information included in CARD, identify trends in AMR mobility and determine previously undescribed and novel resistance variants. Here, we describe updates and recent expansions to CARD and its biocuration process, including new resources for community biocuration of AMR molecular reference data.

1,526 citations

Journal ArticleDOI
TL;DR: The SuperPose web server rapidly and robustly calculates both pairwise and multiple protein structure superpositions using a modified quaternion eigenvalue approach and yields results that are intuitively more in agreement with known biological or structural data.
Abstract: The SuperPose web server rapidly and robustly calculates both pairwise and multiple protein structure superpositions using a modified quaternion eigenvalue approach. SuperPose generates sequence alignments,structurealignments,PDB(ProteinDataBank) coordinatesandRMSDstatistics,aswellasdifference distanceplotsandimages(bothstaticandinteractive) of the superimposed molecules. SuperPose employs a simple interface that requires only PDB files or accession numbers as input. All other superposition decisions are made by the program. SuperPose is uniquely able to superimpose structures that differ substantially in sequence, size or shape. It is also capable of handling a much larger range of superpositionqueriesandsituationsthanmanystandalone programs and yields results that are intuitively more inagreementwithknownbiologicalorstructuraldata. The SuperPose web server is freely accessible at http://wishart.biology.ualberta.ca/SuperPose/.

610 citations

Journal ArticleDOI
TL;DR: BASys (Bacterial Annotation System) is a web server that supports automated, in-depth annotation of bacterial genomic (chromosomal and plasmid) sequences and provides extensive textual annotation and hyperlinked image output.
Abstract: BASys (Bacterial Annotation System) is a web server that supports automated, in-depth annotation of bacterial genomic (chromosomal and plasmid) sequences. It accepts raw DNA sequence data and an optional list of gene identification information and provides extensive textual annotation and hyperlinked image output. BASys uses .30 programs to determine 60 annotation subfields for each gene, including gene/protein name, GO function, COG function, possible paralogues and orthologues, molecular weight, isoelectric point, operon structure, subcellular localization, signal peptides, transmembrane regions, secondary structure, 3D structure, reactions and pathways. The depth and detail of a BASys annotation matches or exceeds that found in a standard SwissProt entry. BASys also generates colorful, clickable and fully zoomable maps of each query chromosome to permit rapid navigation and detailed visual analysis of all resulting gene annotations. The textual annotations and images that are provided by BASys can be generated in 24 h for an average bacterial chromosome (5 Mb). BASys annotations may be viewed and downloaded anonymously or through a password protected access system. The BASys server and databases can also be downloaded and run locally. BASys is accessible at http://wishart.biology. ualberta.ca/basys.

322 citations

Journal ArticleDOI
TL;DR: The main challenge now is to determine if alterations of gut flora are common between IMID or, if particular changes in the gut community are in fact specific to a single disease.
Abstract: The collection of microbes and their genes that exist within and on the human body, collectively known as the microbiome has emerged as a principal factor in human health and disease. Humans and microbes have established a symbiotic association over time, and perturbations in this association have been linked to several immune-mediated inflammatory diseases (IMID) including inflammatory bowel disease, rheumatoid arthritis, and multiple sclerosis. IMID is a term used to describe a group of chronic, highly disabling diseases that affect different organ systems. Though a cornerstone commonality between IMID is the idiopathic nature of disease, a considerable portion of their pathobiology overlaps including epidemiological co-occurrence, genetic susceptibility loci and environmental risk factors. At present, it is clear that persons with an IMID are at an increased risk for developing comorbidities, including additional IMID. Advancements in sequencing technologies and a parallel explosion of 16S rDNA and metagenomics community profiling studies have allowed for the characterization of microbiomes throughout the human body including the gut, in a myriad of human diseases and in health. The main challenge now is to determine if alterations of gut flora are common between IMID or, if particular changes in the gut community are in fact specific to a single disease. Herein, we review and discuss the relationships between the gut microbiota and IMID.

315 citations

Journal ArticleDOI
TL;DR: GView is a Java application for viewing and examining prokaryotic genomes in a circular or linear context that accepts standard sequence file formats and an optional style specification file to generate customizable, publication quality genome maps in bitmap and scalable vector graphics formats.
Abstract: Summary: GView is a Java application for viewing and examining prokaryotic genomes in a circular or linear context. It accepts standard sequence file formats and an optional style specification file to generate customizable, publication quality genome maps in bitmap and scalable vector graphics formats. GView features an interactive pan-and-zoom interface, a command-line interface for incorporation in genome analysis pipelines, and a public Application Programming Interface for incorporation in other Java applications. Availability: GView is a freely available application licensed under the GNU Public License. The application, source code, documentation, file specifications, tutorials and image galleries are available at http://gview.ca Contact: gary.van.domselaar@phac-aspc.gc.ca

293 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: A fully automated service for annotating bacterial and archaeal genomes that identifies protein-encoding, rRNA and tRNA genes, assigns functions to the genes, predicts which subsystems are represented in the genome, uses this information to reconstruct the metabolic network and makes the output easily downloadable for the user.
Abstract: The number of prokaryotic genome sequences becoming available is growing steadily and is growing faster than our ability to accurately annotate them. We describe a fully automated service for annotating bacterial and archaeal genomes. The service identifies protein-encoding, rRNA and tRNA genes, assigns functions to the genes, predicts which subsystems are represented in the genome, uses this information to reconstruct the metabolic network and makes the output easily downloadable for the user. In addition, the annotated genome can be browsed in an environment that supports comparative analysis with the annotated genomes maintained in the SEED environment. The service normally makes the annotated genome available within 12–24 hours of submission, but ultimately the quality of such a service will be judged in terms of accuracy, consistency, and completeness of the produced annotations. We summarize our attempts to address these issues and discuss plans for incrementally enhancing the service. By providing accurate, rapid annotation freely to the community we have created an important community resource. The service has now been utilized by over 120 external users annotating over 350 distinct genomes.

9,397 citations

Book
01 Jan 2019
TL;DR: The tabular information presented here represents the most current information for drug selection, interpretation, and QC using the procedures standardized in the most recent editions of M02, M07, and M11, and users should replace outdated editions with the current editions of CLSI documents.
Abstract: The data in the interpretive tables in this supplement are valid only if the methodologies in the following Clinical and Laboratory Standards Institute (CLSI)–approved standards are followed: M02-A12—Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Twelfth Edition; M07-A10—Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Tenth Edition; and M11-A8—Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard—Eighth Edition. The standards contain information about both disk (M02) and dilution (M07 and M11) test procedures for aerobic and anaerobic bacteria. Clinicians depend heavily on information from the microbiology laboratory for treatment of their seriously ill patients. The clinical importance of antimicrobial susceptibility test results demands that these tests be performed under optimal conditions and that laboratories have the capability to provide results for the newest antimicrobial agents. The tabular information presented here represents the most current information for drug selection, interpretation, and QC using the procedures standardized in the most current editions of M02, M07, and M11. Users should replace the tables published earlier with these new tables. (Changes in the tables since the previous edition appear in boldface type.) Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. CLSI supplement M100 (ISBN 1-56238-804-5 [Print]; ISBN 1-56238-805-3 [Electronic]). Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087 USA, 2017. The Clinical and Laboratory Standards Institute consensus process, which is the mechanism for moving a document through two or more levels of review by the health care community, is an ongoing process. Users should expect revised editions of any given document. Because rapid changes in technology may affect the procedures, methods, and protocols in a standard or guideline, users should replace outdated editions with the current editions of CLSI documents. Current editions are listed in the CLSI catalog and posted on our website at www.clsi.org. If you or your organization is not a member and would like to become one, and to request a copy of the catalog, contact us at: Telephone: +1.610.688.0100; Fax: +1.610.688.0700; E-Mail: customerservice@clsi.org; Website: www.clsi.org. M100S, 26th ed. January 2016 Replaces M100-S25 Performance Standards for Antimicrobial Susceptibility Testing Jean B. Patel, PhD, D(ABMM) Franklin R. Cockerill III, MD George M. Eliopoulos, MD Stephen G. Jenkins, PhD, D(ABMM), F(AAM) James S. Lewis II, PharmD Brandi Limbago, PhD David P. Nicolau, PharmD, FCCP, FIDSA Robin Patel, MD M ir Pow ll, MD, FRCP, FRCPath Sandra S. Richter, MD, D(ABMM) Jana M. Swenson, MMSc Maria M. Traczewski, BS, MT(ASCP) John D. Turnidge, MD Melvi P. Weinstein, MD Barbara L. Zimmer, PhD

3,367 citations