scispace - formally typeset
Search or ask a question
Author

Gaurav Sharma

Other affiliations: Northeastern University, D. E. Shaw & Co., Hewlett-Packard  ...read more
Bio: Gaurav Sharma is an academic researcher from Shenzhen University. The author has contributed to research in topics: Medicine & Photocatalysis. The author has an hindex of 82, co-authored 1244 publications receiving 31482 citations. Previous affiliations of Gaurav Sharma include Northeastern University & D. E. Shaw & Co..


Papers
More filters
Proceedings ArticleDOI
27 Jun 2015
TL;DR: The availability of data at hitherto unimagined scales and temporal longitudes coupled with a new generation of intelligent processing algorithms can facilitate an evolution in the practice of medicine and help reduce the cost of health care while simultaneously improving outcomes.
Abstract: Among the panoply of applications enabled by the Internet of Things (IoT), smart and connected health care is a particularly important one. Networked sensors, either worn on the body or embedded in our living environments, make possible the gathering of rich information indicative of our physical and mental health. Captured on a continual basis, aggregated, and effectively mined, such information can bring about a positive transformative change in the health care landscape. In particular, the availability of data at hitherto unimagined scales and temporal longitudes coupled with a new generation of intelligent processing algorithms can: (a) facilitate an evolution in the practice of medicine, from the current post facto diagnose-and-treat reactive paradigm, to a proactive framework for prognosis of diseases at an incipient stage, coupled with prevention, cure, and overall management of health instead of disease, (b) enable personalization of treatment and management options targeted particularly to the specific circumstances and needs of the individual, and (c) help reduce the cost of health care while simultaneously improving outcomes. In this paper, we highlight the opportunities and challenges for IoT in realizing this vision of the future of health care.

620 citations

Journal ArticleDOI
TL;DR: Fundamental concepts of color perception and measurement are first presented using vector-space notation and terminology in order to establish the background and lay down terminology.
Abstract: This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented using vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided.

534 citations

Journal ArticleDOI
TL;DR: Bimetallic nanoparticles (BNPs) are formed by the combination of two different metals and have attracted huge attention in both technological and scientific view because BNPs shows better properties as mentioned in this paper.

402 citations

Proceedings ArticleDOI
29 Sep 2006
TL;DR: It is shown that under a setting with single-hop traffic and no rate control, the maximal scheduling policy can achieve a constant fraction of the capacity region for networks whose connectivity graph can be represented using one of the above classes of graphs.
Abstract: We consider the problem of throughput-optimal scheduling in wireless networks subject to interference constraints. We model the interference using a family of K -hop interference models. We define a K-hop interference model as one for which no two links within K hops can successfully transmit at the same time (Note that IEEE 802.11 DCF corresponds to a 2-hop interference model.) .For a given K, a throughput-optimal scheduler needs to solve a maximum weighted matching problem subject to the K-hop interference constraints. For K=1, the resulting problem is the classical Maximum Weighted Matching problem, that can be solved in polynomial time. However, we show that for K>1,the resulting problems are NP-Hard and cannot be approximated within a factor that grows polynomially with the number of nodes. Interestingly, we show that for specific kinds of graphs, that can be used to model the underlying connectivity graph of a wide range of wireless networks, the resulting problems admit polynomial time approximation schemes. We also show that a simple greedy matching algorithm provides a constant factor approximation to the scheduling problem for all K in this case. We then show that under a setting with single-hop traffic and no rate control, the maximal scheduling policy considered in recent related works can achieve a constant fraction of the capacity region for networks whose connectivity graph can be represented using one of the above classes of graphs. These results are encouraging as they suggest that one can develop distributed algorithms to achieve near optimal throughput in case of a wide range of wireless networks.

398 citations

Journal ArticleDOI
TL;DR: In this paper, the authors propose a hierarchical watermarking scheme that divides the image into blocks in a multilevel hierarchy and calculates block signatures in this hierarchy. But the method is vulnerable to VQ counterfeiting attacks.
Abstract: Several fragile watermarking schemes presented in the literature are either vulnerable to vector quantization (VQ) counterfeiting attacks or sacrifice localization accuracy to improve security. Using a hierarchical structure, we propose a method that thwarts the VQ attack while sustaining the superior localization properties of blockwise independent watermarking methods. In particular, we propose dividing the image into blocks in a multilevel hierarchy and calculating block signatures in this hierarchy. While signatures of small blocks on the lowest level of the hierarchy ensure superior accuracy of tamper localization, higher level block signatures provide increasing resistance to VQ attacks. At the top level, a signature calculated using the whole image completely thwarts the counterfeiting attack. Moreover, "sliding window" searches through the hierarchy enable the verification of untampered regions after an image has been cropped. We provide experimental results to demonstrate the effectiveness of our method.

390 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI

7,335 citations

Journal ArticleDOI

6,278 citations