scispace - formally typeset
Search or ask a question
Author

Gaurav Verma

Bio: Gaurav Verma is an academic researcher from University of North Texas. The author has contributed to research in topics: Metal-organic framework & Carbon nanofiber. The author has an hindex of 25, co-authored 99 publications receiving 2146 citations. Previous affiliations of Gaurav Verma include University of South Florida & National Institute of Malaria Research.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the cellulose nanofibrils were extracted from wheat straw using steam explosion, acidic treatment and high shear mechanical treatment, and the results confirmed the crystalline nature of the fiber.

400 citations

Journal ArticleDOI
TL;DR: A comprehensive overview of the synthetic strategies and emerging applications of hollow porous materials derived from MOF-based templates and/or precursors is given in this article , where a perspective on the research challenges and future opportunities and prospects for MOF derived hollow materials is provided.

133 citations

Journal ArticleDOI
TL;DR: In this paper, three isostructural indium-organic frameworks based on dual secondary building units (SBUs) were successfully constructed with a bifunctional ligand-directed strategy.
Abstract: With the utilization of a “bifunctional ligand-directed strategy”, three isostructural indium–organic frameworks based on dual secondary building units (SBUs) were successfully constructed with tar...

133 citations

Journal ArticleDOI
TL;DR: In this paper, a new type of ultra-strong C2 H2 nano-trap based on multiple binding interactions was proposed to efficiently capture C2H2 molecules and separate C 2 H2 /CO2 mixture.
Abstract: Porous materials with open metal sites have been investigated to separate various gas mixtures. However, open metal sites show the limitation in the separation of some challenging gas mixtures, such as C2 H2 /CO2 . Herein, we propose a new type of ultra-strong C2 H2 nano-trap based on multiple binding interactions to efficiently capture C2 H2 molecules and separate C2 H2 /CO2 mixture. The ultra-strong acetylene nano-trap shows a benchmark Qst of 79.1 kJ mol-1 for C2 H2 , a record high pure C2 H2 uptake of 2.54 mmol g-1 at 1×10-2 bar, and the highest C2 H2 /CO2 selectivity (53.6), making it as a new benchmark material for the capture of C2 H2 and the separation of C2 H2 /CO2 . The locations of C2 H2 molecules within the MOF-based nanotrap have been visualized by the in situ single-crystal X-ray diffraction studies, which also identify the multiple binding sites accountable for the strong interactions with C2 H2 .

120 citations

Journal ArticleDOI
TL;DR: In batch fermentations using cocultures maximum ethanol production occurred in 48 h of fermentation at 30°C using 60 g/l starch, and Fermentation efficiency was found lower in a two-step process using α-amylase and glucoamylases-treated starch.

112 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of literature on bio-fiber reinforced composites is presented in this paper, where the overall characteristics of reinforcing fibers used in biocomposites, including source, type, structure, composition, as well as mechanical properties, are reviewed.

3,074 citations

Journal ArticleDOI
TL;DR: This protocol provides a detailed description of how to analyze genome-wide experimental data with the PANTHER classification system, and redesigned the website interface to improve both user experience and the system's analytical capability.
Abstract: The PANTHER (protein annotation through evolutionary relationship) classification system (http://wwwpantherdborg/) is a comprehensive system that combines gene function, ontology, pathways and statistical analysis tools that enable biologists to analyze large-scale, genome-wide data from sequencing, proteomics or gene expression experiments The system is built with 82 complete genomes organized into gene families and subfamilies, and their evolutionary relationships are captured in phylogenetic trees, multiple sequence alignments and statistical models (hidden Markov models or HMMs) Genes are classified according to their function in several different ways: families and subfamilies are annotated with ontology terms (Gene Ontology (GO) and PANTHER protein class), and sequences are assigned to PANTHER pathways The PANTHER website includes a suite of tools that enable users to browse and query gene functions, and to analyze large-scale experimental data with a number of statistical tests It is widely used by bench scientists, bioinformaticians, computer scientists and systems biologists In the 2013 release of PANTHER (v80), in addition to an update of the data content, we redesigned the website interface to improve both user experience and the system's analytical capability This protocol provides a detailed description of how to analyze genome-wide experimental data with the PANTHER classification system

2,221 citations

Journal ArticleDOI
TL;DR: An up-to-date review of the literature available on the subject of liquid bio-fuels can be found in this article, which includes information based on the research conducted globally by scientists according to their local socio-cultural and economic situations.

1,948 citations

Journal ArticleDOI
TL;DR: The current PANTHER process as a whole, as well as the website tools for analysis of user-uploaded data are described, which include stable database identifiers for inferred ancestral genes, which are used to associate inferred gene attributes with particular genes in the common ancestral genomes of extant species.
Abstract: The data and tools in PANTHER—a comprehensive, curated database of protein families, trees, subfamilies and functions available at http://pantherdb.org—have undergone continual, extensive improvement for over a decade. Here, we describe the current PANTHER process as a whole, as well as the website tools for analysis of user-uploaded data. The main goals of PANTHER remain essentially unchanged: the accurate inference (and practical application) of gene and protein function over large sequence databases, using phylogenetic trees to extrapolate from the relatively sparse experimental information from a few model organisms. Yet the focus of PANTHER has continually shifted toward more accurate and detailed representations of evolutionary events in gene family histories. The trees are now designed to represent gene family evolution, including inference of evolutionary events, such as speciation and gene duplication. Subfamilies are still curated and used to define HMMs, but gene ontology functional annotations can now be made at any node in the tree, and are designed to represent gain and loss of function by ancestral genes during evolution. Finally, PANTHER now includes stable database identifiers for inferred ancestral genes, which are used to associate inferred gene attributes with particular genes in the common ancestral genomes of extant species.

1,627 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the COF field is targeted, providing a historic overview of the chemistry, the advances in the topology design and synthetic reactions, illustrate the structural features and diversities, and scrutinize the development and potential of various functions through elucidating structure-function correlations.
Abstract: Covalent organic frameworks (COFs) are a class of crystalline porous organic polymers with permanent porosity and highly ordered structures. Unlike other polymers, a significant feature of COFs is that they are structurally predesignable, synthetically controllable, and functionally manageable. In principle, the topological design diagram offers geometric guidance for the structural tiling of extended porous polygons, and the polycondensation reactions provide synthetic ways to construct the predesigned primary and high-order structures. Progress over the past decade in the chemistry of these two aspects undoubtedly established the base of the COF field. By virtue of the availability of organic units and the diversity of topologies and linkages, COFs have emerged as a new field of organic materials that offer a powerful molecular platform for complex structural design and tailor-made functional development. Here we target a comprehensive review of the COF field, provide a historic overview of the chemistry of the COF field, survey the advances in the topology design and synthetic reactions, illustrate the structural features and diversities, scrutinize the development and potential of various functions through elucidating structure-function correlations based on interactions with photons, electrons, holes, spins, ions, and molecules, discuss the key fundamental and challenging issues that need to be addressed, and predict the future directions from chemistry, physics, and materials perspectives.

1,447 citations