scispace - formally typeset
Search or ask a question
Author

Ge Guo

Other affiliations: Wellcome Trust Sanger Institute
Bio: Ge Guo is an academic researcher from Wellcome Trust Centre for Stem Cell Research. The author has contributed to research in topics: Induced pluripotent stem cell & Embryonic stem cell. The author has an hindex of 8, co-authored 10 publications receiving 1630 citations. Previous affiliations of Ge Guo include Wellcome Trust Sanger Institute.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a single reprogramming factor, Klf4, was introduced into EpiSCs, which activated expression of EScell-specific transcripts including endogenous klf4, and downstream markers of lineage specification.
Abstract: Mouse embryonic stem (ES) cells derived from pluripotent early epiblast contribute functionally differentiated progeny to all foetal lineages of chimaeras. By contrast, epistem cell (EpiSC) lines from post-implantation epithelialised epiblast are unable to colonise the embryo even though they express the core pluripotency genes Oct4, Sox2 and Nanog . We examined interconversion between these two cell types. ES cells can readily become EpiSCs in response to growth factor cues. By contrast, EpiSCs do not change into ES cells. We exploited PiggyBac transposition to introduce a single reprogramming factor, Klf4, into EpiSCs. No effect was apparent in EpiSC culture conditions, but in ground state ES cell conditions a fraction of cells formed undifferentiated colonies. These EpiSC-derived induced pluripotent stem (Epi-iPS) cells activated expression of ES cell-specific transcripts including endogenous Klf4 , and downregulated markers of lineage specification. X chromosome silencing in female cells, a feature of the EpiSC state, was erased in Epi-iPS cells. They produced high-contribution chimaeras that yielded germline transmission. These properties were maintained after Cre-mediated deletion of the Klf4 transgene, formally demonstrating complete and stable reprogramming of developmental phenotype. Thus, re-expression of Klf4 in an appropriate environment can regenerate the naive ground state from EpiSCs. Reprogramming is dependent on suppression of extrinsic growth factor stimuli and proceeds to completion in less than 1% of cells. This substantiates the argument that EpiSCs are developmentally, epigenetically and functionally differentiated from ES cells. However, because a single transgene is the minimum requirement to attain the ground state, EpiSCs offer an attractive opportunity for screening for unknown components of the reprogramming process.

759 citations

Journal ArticleDOI
TL;DR: It is reported that enhancing RA signaling by expressing RA receptors (RARs) or by RA agonists profoundly promoted reprogramming, but inhibiting it using a RAR-α dominant-negative form completely blocked it.
Abstract: Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) by expressing four transcription factors: Oct4, Sox2, Klf4, and c-Myc. Here we report that enhancing RA signaling by expressing RA receptors (RARs) or by RA agonists profoundly promoted reprogramming, but inhibiting it using a RAR-α dominant-negative form completely blocked it. Coexpressing Rarg (RAR-γ) and Lrh-1 (liver receptor homologue 1; Nr5a2) with the four factors greatly accelerated reprogramming so that reprogramming of mouse embryonic fibroblast cells to ground-state iPSCs requires only 4 d induction of these six factors. The six-factor combination readily reprogrammed primary human neonatal and adult fibroblast cells to exogenous factor-independent iPSCs, which resembled ground-state mouse ES cells in growth properties, gene expression, and signaling dependency. Our findings demonstrate that signaling through RARs has critical roles in molecular reprogramming and that the synergistic interaction between Rarg and Lrh1 directs reprogramming toward ground-state pluripotency. The human iPSCs described here should facilitate functional analysis of the human genome.

248 citations

Journal ArticleDOI
TL;DR: Findings indicate that Jak/Stat3 participate directly in molecular reprogramming and that activation of this pathway is a limiting component of pluripotency.

230 citations

Journal ArticleDOI
TL;DR: Unlike previously identified reprogramming molecules, Nr5a receptors play no evident role in ES cell self-renewal, which implies a different foundation for their capacity to reset pluripotency and suggests that further factors remain to be identified.
Abstract: In rodents, the naive early epiblast undergoes profound morphogenetic, transcriptional and epigenetic changes after implantation. These differences are maintained between blastocyst-derived embryonic stem (ES) cells and egg cylinder-derived epiblast stem cells (EpiSCs). Notably, ES cells robustly colonise chimaeras, whereas EpiSCs show little or no contribution. ES cells self-renew independently of mitogenic growth factors, whereas EpiSCs require fibroblast growth factor. However, EpiSCs retain the core pluripotency factors Oct4 and Sox2 and the developmental barrier dividing them from unrestricted pluripotency can be surmounted by a single reprogramming factor. This provides an opportunity to identify molecules that can reset the naive state. We undertook a forward genetic screen for effectors of EpiSC reprogramming, employing piggyBac transposition to activate endogenous gene expression at random and selecting for undifferentiated colonies in the absence of growth factor signalling. Three recovered clones harboured integrations that activate the closely related orphan nuclear receptor genes Nr5a1 and Nr5a2. Activity of Nr5a1 and Nr5a2 was confirmed by direct transfection. Reprogrammed colonies were obtained without transgene integration and at 10-fold higher frequency than with other single factors. Converted cells exhibited the diagnostic self-renewal characteristics, gene expression profile and X chromosome activation signature of ground state pluripotency. They efficiently produced adult chimaeras and gave germline transmission. Nr5a receptors regulate Oct4 transcription but this is insufficient for reprogramming. Intriguingly, unlike previously identified reprogramming molecules, Nr5a receptors play no evident role in ES cell self-renewal. This implies a different foundation for their capacity to reset pluripotency and suggests that further factors remain to be identified.

165 citations

Journal ArticleDOI
24 Jun 2004-Nature
TL;DR: The combination of insertional mutagenesis in Blm-deficient ES cells establishes a new approach for phenotype-based recessive genetic screens in ES cells, and demonstrates the recovery of cells with homozygous mutations in known and novel MMR genes.
Abstract: Phenotype-driven recessive genetic screens in diploid organisms require a strategy to render the mutation homozygous. Although homozygous mutant mice can be generated by breeding, a reliable method to make homozygous mutations in cultured cells has not been available, limiting recessive screens in culture. Cultured embryonic stem (ES) cells1 provide access to all of the genes required to elaborate the fundamental components and physiological systems of a mammalian cell. Here we have exploited the high rate of mitotic recombination in Bloom's syndrome protein (Blm)-deficient ES2 cells to generate a genome-wide library of homozygous mutant cells from heterozygous mutations induced with a revertible gene trap3 retrovirus. We have screened this library for cells with defects in DNA mismatch repair (MMR), a system that detects and repairs base–base mismatches4. We demonstrate the recovery of cells with homozygous mutations in known and novel MMR genes. We identified Dnmt1(ref. 5) as a novel MMR gene and confirmed that Dnmt1-deficient ES cells exhibit micro-satellite instability6, providing a mechanistic explanation for the role of Dnmt1 in cancer. The combination of insertional mutagenesis in Blm-deficient ES cells establishes a new approach for phenotype-based recessive genetic screens in ES cells.

155 citations


Cited by
More filters
Journal ArticleDOI
03 Jan 2014-Science
TL;DR: In this paper, a pooled, loss-of-function genetic screening approach suitable for both positive and negative selection that uses a genome-scale lentiviral single-guide RNA (sgRNA) library was described.
Abstract: The bacterial clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 system for genome editing has greatly expanded the toolbox for mammalian genetics, enabling the rapid generation of isogenic cell lines and mice with modified alleles. Here, we describe a pooled, loss-of-function genetic screening approach suitable for both positive and negative selection that uses a genome-scale lentiviral single-guide RNA (sgRNA) library. sgRNA expression cassettes were stably integrated into the genome, which enabled a complex mutant pool to be tracked by massively parallel sequencing. We used a library containing 73,000 sgRNAs to generate knockout collections and performed screens in two human cell lines. A screen for resistance to the nucleotide analog 6-thioguanine identified all expected members of the DNA mismatch repair pathway, whereas another for the DNA topoisomerase II ( TOP2A ) poison etoposide identified TOP2A , as expected, and also cyclin-dependent kinase 6, CDK6. A negative selection screen for essential genes identified numerous gene sets corresponding to fundamental processes. Last, we show that sgRNA efficiency is associated with specific sequence motifs, enabling the prediction of more effective sgRNAs. Collectively, these results establish Cas9/sgRNA screens as a powerful tool for systematic genetic analysis in mammalian cells.

2,487 citations

01 Dec 2013
TL;DR: A pooled, loss-of-function genetic screening approach suitable for both positive and negative selection that uses a genome-scale lentiviral single-guide RNA (sgRNA) library is described and it is shown that sgRNA efficiency is associated with specific sequence motifs, enabling the prediction of more effective sgRNAs.
Abstract: The bacterial CRISPR/Cas9 system for genome editing has greatly expanded the toolbox for mammalian genetics, enabling the rapid generation of isogenic cell lines and mice with modified alleles. Here, we describe a pooled, loss-of-function genetic screening approach suitable for both positive and negative selection that uses a genome-scale lentiviral single guide RNA (sgRNA) library. sgRNA expression cassettes were stably integrated into the genome, which enabled a complex mutant pool to be tracked by massively parallel sequencing. We used a library containing 73,000 sgRNAs to generate knockout collections and performed screens in two human cell lines. A screen for resistance to the nucleotide analog 6-thioguanine identified all expected members of the DNA mismatch repair pathway, while another for the DNA topoisomerase II (TOP2A) poison etoposide identified TOP2A, as expected, and also cyclin-dependent kinase 6, CDK6. A negative selection screen for essential genes identified numerous gene sets corresponding to fundamental processes. Finally, we show that sgRNA efficiency is associated with specific sequence motifs, enabling the prediction of more effective sgRNAs. Collectively, these results establish Cas9/ sgRNA screens as a powerful tool for systematic genetic analysis in mammalian cells.

2,130 citations

Journal ArticleDOI
TL;DR: There are multiple families of DNA (cytosine-5) methyltransferases in eukaryotes, and each family appears to be controlled by different regulatory inputs.
Abstract: Ke yW ords 5-methylcytosine, DNA methyltransferase, transposons, genomic imprinting ■ Abstract Large-genome eukaryotes use heritable cytosine methylation to silence promoters, especially those associated with transposons and imprinted genes. Cytosine methylation does not reinforce or replace ancestral gene regulation pathways but instead endows methylated genomes with the ability to repress specific promoters in a manner that is buffered against changes in the internal and external environment. Recent studies have shown that the targeting of de novo methylation depends on multiple inputs; these include the interaction of repeated sequences, local states of histone lysine methylation, small RNAs and components of the RNAi pathway, and divergent and catalytically inert cytosine methyltransferase homologues that have acquired regulatory roles. There are multiple families of DNA (cytosine-5) methyltransferases in eukaryotes, and each family appears to be controlled by different regulatory inputs. Sequence-specific DNA- binding proteins, which regulate most aspects of gene expression, do not appear to be involved in the establishment or maintenance of genomic methylation patterns.

2,020 citations

Journal ArticleDOI
TL;DR: It is proposed that two phases of pluripotency can be defined: naive and primed, and this distinction extends to pluripotent stem cells derived from embryos or by molecular reprogramming ex vivo.

1,640 citations

Journal ArticleDOI
30 Aug 2013-Science
TL;DR: In this article, proteomics analyses revealed that levels of the nucleoskeletal protein lamin-A scaled with tissue elasticity, as did levels of collagens in the extracellular matrix that determine E.
Abstract: Tissues can be soft like fat, which bears little stress, or stiff like bone, which sustains high stress, but whether there is a systematic relationship between tissue mechanics and differentiation is unknown. Here, proteomics analyses revealed that levels of the nucleoskeletal protein lamin-A scaled with tissue elasticity, E, as did levels of collagens in the extracellular matrix that determine E. Stem cell differentiation into fat on soft matrix was enhanced by low lamin-A levels, whereas differentiation into bone on stiff matrix was enhanced by high lamin-A levels. Matrix stiffness directly influenced lamin-A protein levels, and, although lamin-A transcription was regulated by the vitamin A/retinoic acid (RA) pathway with broad roles in development, nuclear entry of RA receptors was modulated by lamin-A protein. Tissue stiffness and stress thus increase lamin-A levels, which stabilize the nucleus while also contributing to lineage determination.

1,563 citations