scispace - formally typeset
Search or ask a question
Author

Gebrekidan Gebresilassie Eshetu

Bio: Gebrekidan Gebresilassie Eshetu is an academic researcher from RWTH Aachen University. The author has contributed to research in topics: Electrolyte & Battery (electricity). The author has an hindex of 27, co-authored 40 publications receiving 2886 citations. Previous affiliations of Gebrekidan Gebresilassie Eshetu include Karlsruhe Institute of Technology & Centre national de la recherche scientifique.

Papers
More filters
Journal ArticleDOI
TL;DR: The opportunities for designing new electrolytes appear to be almost infinite, which certainly complicates strict classification of such systems and a fundamental understanding of their properties, but these innumerable opportunities also provide a great chance of developing highly functionalized, new electrolyte systems, which may overcome the afore-mentioned safety concerns.
Abstract: Lithium-ion batteries are becoming increasingly important for electrifying the modern transportation system and, thus, hold the promise to enable sustainable mobility in the future. However, their large-scale application is hindered by severe safety concerns when the cells are exposed to mechanical, thermal, or electrical abuse conditions. These safety issues are intrinsically related to their superior energy density, combined with the (present) utilization of highly volatile and flammable organic-solvent-based electrolytes. Herein, state-of-the-art electrolyte systems and potential alternatives are briefly surveyed, with a particular focus on their (inherent) safety characteristics. The challenges, which so far prevent the widespread replacement of organic carbonate-based electrolytes with LiPF6 as the conducting salt, are also reviewed herein. Starting from rather "facile" electrolyte modifications by (partially) replacing the organic solvent or lithium salt and/or the addition of functional electrolyte additives, conceptually new electrolyte systems, including ionic liquids, solvent-free, and/or gelled polymer-based electrolytes, as well as solid-state electrolytes, are also considered. Indeed, the opportunities for designing new electrolytes appear to be almost infinite, which certainly complicates strict classification of such systems and a fundamental understanding of their properties. Nevertheless, these innumerable opportunities also provide a great chance of developing highly functionalized, new electrolyte systems, which may overcome the afore-mentioned safety concerns, while also offering enhanced mechanical, thermal, physicochemical, and electrochemical performance.

591 citations

Journal ArticleDOI
TL;DR: This Review gives an overview of the various functional additives that are being applied in lithium metal rechargeable batteries and aims to stimulate new avenues for the practical realization of these appealing devices.
Abstract: Lithium metal (Li0 ) rechargeable batteries (LMBs), such as systems with a Li0 anode and intercalation and/or conversion type cathode, lithium-sulfur (Li-S), and lithium-oxygen (O2 )/air (Li-O2 /air) batteries, are becoming increasingly important for electrifying the modern transportation system, with the aim of sustainable mobility. Although some rechargeable LMBs (e.g. Li0 /LiFePO4 batteries from Bollore Bluecar, Li-S batteries from OXIS Energy and Sion Power) are already commercially viable in niche applications, their large-scale deployment is hampered by a number of formidable challenges, including growth of lithium dendrites, electrolyte instability towards high voltage intercalation-type cathodes, the poor electronic and ionic conductivities of sulfur (S8 ) and O2 , as well as their corresponding reduction products (e.g. Li2 S and Li2 O), dissolution, and shuttling of polysulfide (PS) intermediates. This leads to a short lifecycle, low coulombic/energy efficiency, poor safety, and a high self-discharge rate. The use of electrolyte additives is considered one of the most economical and effective approaches for circumventing these problems. This Review gives an overview of the various functional additives that are being applied and aims to stimulate new avenues for the practical realization of these appealing devices.

475 citations

Journal ArticleDOI
TL;DR: This Review provides an overview of the role of ILs in the synthesis of materials for batteries, supercapacitors, and green electrode processing.
Abstract: The advent of ionic liquids (ILs) as eco-friendly and promising reaction media has opened new frontiers in the field of electrochemical energy storage Beyond their use as electrolyte components in batteries and supercapacitors, ILs have unique properties that make them suitable as functional advanced materials, media for materials production, and components for preparing highly engineered functional products Aiming at offering an in-depth review on the newly emerging IL-based green synthesis processes of energy storage materials, this Review provides an overview of the role of ILs in the synthesis of materials for batteries, supercapacitors, and green electrode processing It is expected that this Review will assess the status quo of the research field and thereby stimulate new thoughts and ideas on the emerging challenges and opportunities of IL-based syntheses of energy materials

222 citations

Journal ArticleDOI
TL;DR: An ultrahigh performance of ASSLSBs is obtained via an anomalous synergistic effect between (fluorosulfonyl)(trifluoromethanesulfonyL)imide anions inherited from the design of lithium salts in SPEs and the polysulfide species formed during the cycling, implying the importance of the molecular structure of lithium salt in ASSLSB and paving a way for future development of safe and cost-effective Li-S batteries.
Abstract: With a remarkably higher theoretical energy density compared to lithium-ion batteries (LIBs) and abundance of elemental sulfur, lithium sulfur (Li–S) batteries have emerged as one of the most promi...

216 citations

Journal ArticleDOI
TL;DR: In this article, LiN3 was used as an electrolyte additive for all-solid-state Li-S batteries to avoid dendrite formation and polysulfide shuttling.
Abstract: Of the various beyond-lithium-ion battery technologies, lithium-sulfur (Li-S) batteries have an appealing theoretical energy density and are being intensely investigated as next-generation rechargeable lithium-metal batteries. However, the stability of the lithium-metal (Li°) anode is among the most urgent challenges that need to be addressed to ensure the long-term stability of Li-S batteries. Herein, we report lithium azide (LiN3 ) as a novel electrolyte additive for all-solid-state Li-S batteries (ASSLSBs). It results in the formation of a thin, compact and highly conductive passivation layer on the Li° anode, thereby avoiding dendrite formation, and polysulfide shuttling. It greatly enhances the cycling performance, Coulombic and energy efficiencies of ASSLSBs, outperforming the state-of-the-art additive lithium nitrate (LiNO3 ).

188 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The main roles of material science in the development of LIBs are discussed, with a statement of caution for the current modern battery research along with a brief discussion on beyond lithium-ion battery chemistries.
Abstract: Over the past 30 years, significant commercial and academic progress has been made on Li-based battery technologies. From the early Li-metal anode iterations to the current commercial Li-ion batteries (LIBs), the story of the Li-based battery is full of breakthroughs and back tracing steps. This review will discuss the main roles of material science in the development of LIBs. As LIB research progresses and the materials of interest change, different emphases on the different subdisciplines of material science are placed. Early works on LIBs focus more on solid state physics whereas near the end of the 20th century, researchers began to focus more on the morphological aspects (surface coating, porosity, size, and shape) of electrode materials. While it is easy to point out which specific cathode and anode materials are currently good candidates for the next-generation of batteries, it is difficult to explain exactly why those are chosen. In this review, for the reader a complete developmental story of LIB should be clearly drawn, along with an explanation of the reasons responsible for the various technological shifts. The review will end with a statement of caution for the current modern battery research along with a brief discussion on beyond lithium-ion battery chemistries.

2,867 citations

Journal ArticleDOI
TL;DR: In this article, the state-of-the-art advances in active materials, electrolytes and cell chemistries for automotive batteries are surveyed, along with an assessment of the potential to fulfil the ambitious targets of electric vehicle propulsion.
Abstract: It is widely accepted that for electric vehicles to be accepted by consumers and to achieve wide market penetration, ranges of at least 500 km at an affordable cost are required. Therefore, significant improvements to lithium-ion batteries (LIBs) in terms of energy density and cost along the battery value chain are required, while other key performance indicators, such as lifetime, safety, fast-charging ability and low-temperature performance, need to be enhanced or at least sustained. Here, we review advances and challenges in LIB materials for automotive applications, in particular with respect to cost and performance parameters. The production processes of anode and cathode materials are discussed, focusing on material abundance and cost. Advantages and challenges of different types of electrolyte for automotive batteries are examined. Finally, energy densities and costs of promising battery chemistries are critically evaluated along with an assessment of the potential to fulfil the ambitious targets of electric vehicle propulsion. Electrification is seen as the future of automotive industry, and deployment of electric vehicles largely depends on the development of rechargeable batteries. Here, the authors survey the state-of-the-art advances in active materials, electrolytes and cell chemistries for automotive batteries.

1,826 citations

Journal ArticleDOI
Xuning Feng1, Minggao Ouyang1, Xiang Liu1, Languang Lu1, Yong Xia1, Xiangming He1 
TL;DR: In this article, the authors provided a comprehensive review on the thermal runaway mechanism of the commercial lithium ion battery for electric vehicles, and a three-level protection concept was proposed to help reduce thermal runaway hazard.

1,604 citations

Journal ArticleDOI
TL;DR: The background leading to such promises is carefully assessed in terms of cell and battery production, as well as raw material supply risks, for sodium-ion and modern lithium-ion batteries as mentioned in this paper.
Abstract: Sodium-ion batteries are an appealing alternative to lithium-ion batteries because they use raw materials that are less expensive, more abundant and less toxic. The background leading to such promises is carefully assessed in terms of cell and battery production, as well as raw material supply risks, for sodium-ion and modern lithium-ion batteries.

1,246 citations

Journal ArticleDOI
TL;DR: This review summarizes the current trends and provides guidelines towards achieving next-generation rechargeable Li and Li-ion batteries with higher energy densities, better safety characteristics, lower cost and longer cycle life by addressing batteries using high-voltage cathodes, metal fluoride electrodes, chalcogen electrodes, Li metal anodes, high-capacity anodes as well as useful electrolyte solutions.
Abstract: Commercial lithium-ion (Li-ion) batteries suffer from low energy density and do not meet the growing demands of the energy storage market. Therefore, building next-generation rechargeable Li and Li-ion batteries with higher energy densities, better safety characteristics, lower cost and longer cycle life is of outmost importance. To achieve smaller and lighter next-generation rechargeable Li and Li-ion batteries that can outperform commercial Li-ion batteries, several new energy storage chemistries are being extensively studied. In this review, we summarize the current trends and provide guidelines towards achieving this goal, by addressing batteries using high-voltage cathodes, metal fluoride electrodes, chalcogen electrodes, Li metal anodes, high-capacity anodes as well as useful electrolyte solutions. We discuss the choice of active materials, practically achievable energy densities and challenges faced by the respective battery systems. Furthermore, strategies to overcome remaining challenges for achieving energy characteristics are addressed in the hope of providing a useful and balanced assessment of current status and perspectives of rechargeable Li and Li-ion batteries.

1,086 citations