scispace - formally typeset
Search or ask a question
Author

Geetha Gopalakrishnan

Bio: Geetha Gopalakrishnan is an academic researcher. The author has contributed to research in topics: Aedes aegypti & Petroleum ether. The author has an hindex of 4, co-authored 4 publications receiving 525 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that E. tirucalli can be applied as an ideal potential larvicide against A. aegypti and C. quinquefasciatus, and an ideal ecofriendly approach for the control of the dengue vector.
Abstract: Larvicidal activity of ethyl acetate, butanol, and petroleum ether extracts of five species of Euphorbiaceae plants, Jatropha curcas, Pedilanthus tithymaloides, Phyllanthus amarus, Euphorbia hirta, and Euphorbia tirucalli, were tested against the early fourth instar larvae of Aedes aegypti L. and Culex quinquefasciatus (Say). The larval mortality was observed after 24 h of exposure. All extracts showed low larvicidal effects; however, the highest larval mortality was found in petroleum ether extract. The LC50 value of petroleum ether extracts of J. curcas, P. tithymaloides, P. amarus, E. hirta, and E. tirucalli were 8.79, 55.26, 90.92, 272.36, and 4.25 ppm, respectively, against A. aegypti and 11.34, 76.61, 113.40, 424.94, and 5.52 ppm, respectively, against C quinquefasciatus. Of the various ratios tested, the petroleum ether extracts of J. curcas and E. tirucalli were observed to be more efficient than the other plant extracts. It is, therefore, suggested that E. tirucalli can be applied as an ideal potential larvicide against A. aegypti and C. quinquefasciatus. This is an ideal ecofriendly approach for the control of the dengue vector, A. aegypti, and the lymphatic filariasis vector, C. quinquefasciatus.

240 citations

Journal ArticleDOI
TL;DR: Results of this study show that the petroleum ether extract of A. indicum may be considered as a potent source and β-sitosterol as a new natural mosquito larvicidal agent.
Abstract: Larvicidal activity of crude hexane, ethyl acetate, petroleum ether, acetone and methanol extracts of five medicinal plants, Abutilon indicum, Aegle marmelos, Euphorbia thymifolia, Jatropha gossypifolia and Solanum torvum were assayed for their toxicity against the early fourth-instar larvae of Culex quinquefasciatus. The larval mortality was observed after 24 h exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in petroleum ether extract of A. indicum. In the present study, bioassay-guided fractionation of A. indicum led to the separation and identification of a β-sitosterol as a potential new mosquito larvicidal compound with LC50 value of 11.49, 3.58 and 26.67 ppm against Aedes aegypti L, Anopheles stephensi Liston and C. quinquefasciatus Say (Diptera: Culicidae), respectively. 1H NMR, 13C NMR and mass spectral data confirmed the identification of the active compound. β-sitosterol has been recognized as the active ingredient of many medicinal plant extracts. All the crude extracts when screened for their larvicidal activities indicated toxicity against the larvae of C. quinquefasciatus. This article reports the isolation and identification of the β-sitosterol as well as bioassay data for the crude extracts. There are no reports of β-sitosterol in the genus A. indicum, and their larvicidal activities are being evaluated for the first time. Results of this study show that the petroleum ether extract of A. indicum may be considered as a potent source and β-sitosterol as a new natural mosquito larvicidal agent.

204 citations

Journal ArticleDOI
TL;DR: The larvicidal activity of crude hexane, ethyl acetate, petroleum ether, acetone, and methanol extracts of the leaf and bark of Ficus racemosa was assayed for their toxicity against the early fourth-instar larvae of Culex quinquefasciatus and gluanol acetate was isolated and identified as new mosquito larvicides.
Abstract: The larvicidal activity of crude hexane, ethyl acetate, petroleum ether, acetone, and methanol extracts of the leaf and bark of Ficus racemosa (Moraceae) was assayed for their toxicity against the early fourth-instar larvae of Culex quinquefasciatus (Diptera: Culicidae). The larval mortality was observed after 24-h exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in bark acetone extract of F. racemosa. In the present study, bioassay-guided fractionation of acetone extract led to the separation and identification of a tetracyclic triterpenes derivative; gluanol acetate was isolated and identified as new mosquito larvicidal compound. Gluanol acetate was quite potent against fourth-instar larvae of Aedes aegypti L. (LC50 14.55 and LC90 64.99 ppm), Anopheles stephensi Liston (LC50 28.50 and LC90 106.50 ppm) and C. quinquefasciatus Say (LC50 41.42 and LC90 192.77 ppm). The structure was elucidated from infrared, ultraviolet, 1H-nuclear magnetic resonance (NMR), 13C-NMR, and mass spectral data. This is the first report on the mosquito larvicidal activity of the reported compound from F. racemosa.

76 citations

Journal ArticleDOI
TL;DR: The larvicidal activity of a petroleum ether extract of Zingiber officinale Roscoe (Zingiberaceae) was evaluated against Aedes aegypti L. and Culex quinquefasciatus Say (Diptera); the results show that the most effective compound was 4‐gingerol.
Abstract: The larvicidal activity of a petroleum ether extract of Zingiber officinale Roscoe (Zingiberaceae) was evaluated against Aedes aegypti L. and Culex quinquefasciatus Say (Diptera). Bioassay-guided fractionation led to the isolation of 4-gingerol (1), (6)-dehydrogingerdione (2) and (6)-dihydrogingerdione (3); the latter has not previously been reported from Z. officinale. The structures were established from infrared (IR), ultraviolet (UV), (1)H-nuclear magnetic resonance (NMR), (13)C-NMR and mass spectral data. Following a 24 h exposure, compounds 1-3 exhibited larvicidal activities against fourth instar larvae of A. aegypti (LC(50) 4.25, 9.80, 18.20 ppm) and C. quinquefasciatus (LC50 5.52, 7.66, 27.24 ppm), respectively. The results show that the most effective compound was 4-gingerol.

45 citations


Cited by
More filters
Journal Article
TL;DR: The current state of knowledge on phytochemical sources and mosquitocidal activity, their mechanism of action on target population, variation of their larvicidal activity according to mosquito species, instar specificity, polarity of solvents used during extraction, nature of active ingredient and promising advances made in biological control of mosquitoes by plant derived secondary metabolites have been reviewed.
Abstract: Mosquitoes act as a vector for most of the life threatening diseases like malaria, yellow fever, dengue fever, chikungunya ferver, filariasis, encephalitis, West Nile Virus infection, etc. Under the Integrated Mosquito Management (IMM), emphasis was given on the application of alternative strategies in mosquito control. The continuous application of synthetic insecticides causes development of resistance in vector species, biological magnification of toxic substances through the food chain and adverse effects on environmental quality and non target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are non-toxic, easily available at affordable prices, biodegradable and show broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on phytochemical sources and mosquitocidal activity, their mechanism of action on target population, variation of their larvicidal activity according to mosquito species, instar specificity, polarity of solvents used during extraction, nature of active ingredient and promising advances made in biological control of mosquitoes by plant derived secondary metabolites have been reviewed.

508 citations

Journal ArticleDOI
TL;DR: The results suggest that the leaf methanol, aqueous extracts of N. nucifera, and green synthesis of silver nanoparticles have the potential to be used as an ideal eco-friendly approach for the control of the A. subpictus and C. quinquefasciatus mosquito larvae.
Abstract: The aim of this study was to investigate the larvicidal potential of the hexane, chloroform, ethyl acetate, acetone, methanol, and aqueous leaf extracts of Nelumbo nucifera Gaertn. (Nymphaeaceae) and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of Anopheles subpictus Grassi and Culex quinquefasciatus Say (Diptera: Culicidae). Nanoparticles are being used in many commercial applications. It was found that aqueous silver ions can be reduced by aqueous extract of plant parts to generate extremely stable silver nanoparticles in water. The results recorded from UV–vis spectrum, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared support the biosynthesis and characterization of silver nanoparticles. Larvae were exposed to varying concentrations of plant extracts and synthesized silver nanoparticles for 24 h. All extracts showed moderate larvicidal effects; however, the maximum efficacy was observed in crude methanol, aqueous, and synthesized silver nanoparticles against the larvae of A. subpictus (LC50 = 8.89, 11.82, and 0.69 ppm; LC90 = 28.65, 36.06, and 2.15 ppm) and against the larvae of C. quinquefasciatus (LC50 = 9.51, 13.65, and 1.10 ppm; LC90 = 28.13, 35.83, and 3.59 ppm), respectively. These results suggest that the leaf methanol, aqueous extracts of N. nucifera, and green synthesis of silver nanoparticles have the potential to be used as an ideal eco-friendly approach for the control of the A. subpictus and C. quinquefasciatus. This is the first report on the mosquito larvicidal activity of the plant extracts and synthesized nanoparticles.

398 citations

Journal ArticleDOI
TL;DR: The results suggest that the synthesized AgNPs have the potential to be used as an ideal eco-friendly approach for the control of the Culex tritaeniorhynchus and A. subpictus vectors.

334 citations

Journal ArticleDOI
TL;DR: Phytosterols are a subgroup of the steroids, as an important class of bioorganic molecules, widespread in plants, animals, marines as well as fungi and have similarity to cholesterol in structure.
Abstract: Aims : Phytosterols are a subgroup of the steroids, as an important class of bioorganic molecules,widespread in plants, animals, marines as well as fungi and have similarity to cholesterol in structure. These compounds have a long history of consumption as food or pharmaceutical products, and generally recognized as safe without undesirable side effects.

244 citations

Journal ArticleDOI
TL;DR: Results suggest that the leaf petroleum ether, flower methanol extracts of C. auriculata, leaf and seed methanl extracts of S. torvum and leaf hexane extract of V. negundo have the potential to be used as an ideal eco-friendly approach for the control of the A. subpictus and C. tritaeniorhynchus mosquito vector.
Abstract: Mosquito control is facing a threat due to the emergence of resistance to synthetic insecticides. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. The acetone, chloroform, ethyl acetate, hexane, methanol and petroleum ether extracts of leaf, flower and seed of Cassia auriculata L., Leucas aspera (Willd.), Rhinacanthus nasutus KURZ., Solanum torvum Swartz and Vitex negundo Linn. were tested against fourth instar larvae of malaria vector, Anopheles subpictus Grassi and Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae). The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest mortality was found in leaf petroleum ether, flower methanol extracts of C. auriculata, flower methanol extracts of L. aspera and R. nasutus, leaf and seed methanol extracts of S. torvum and leaf hexane extract of V. negundo against the larvae of A. subpictus (LC50 = 44.21, 44.69, 53.16, 41.07, 35.32, 28.90 and 44.40 ppm; LC90 = 187.31, 188.29, 233.18, 142.66, 151.60, 121.05 and 192.11 ppm, respectively) and against the larvae of C. tritaeniorhynchus (LC50 = 69.83, 51.29, 81.24, 71.79, 44.42, 84.47 and 65.35 ppm; LC90 = 335.26, 245.63, 300.45, 361.83, 185.09, 351.41 and 302.42 ppm, respectively). These results suggest that the leaf petroleum ether, flower methanol extracts of C. auriculata, leaf and seed methanol extracts of S. torvum and leaf hexane extract of V. negundo have the potential to be used as an ideal eco-friendly approach for the control of the A. subpictus and C. tritaeniorhynchus. This is the first report on the mosquito larvicidal activity of the medicinal plant extracts.

193 citations