scispace - formally typeset
Search or ask a question
Author

Gen Larsson

Bio: Gen Larsson is an academic researcher from Royal Institute of Technology. The author has contributed to research in topics: Escherichia coli & Lysis. The author has an hindex of 21, co-authored 50 publications receiving 2160 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: IPTG induction of a recombinant protein was shown to influence important cell parameters and considerably increased the yield of carbon dioxide per glucose added, indicating an increased maintenance in the large-scale bioreactor.
Abstract: A heterogeneous micro-environment was identified in a 12 m3 bioreactor with a height-to-diameter ratio of 2.5. The reactor was aerated by a ring sparger and stirred by three Rushton turbines. E. coli cells were cultivated in minimal medium to a cell density in the order of 30 g/l. Samples of glucose, the growth limiting component fed to the process, were taken at three levels in the bioreactor (top/middle/bottom). These showed that glucose concentration declined away from the feedpoint. The gradients depended on the mixing characteristics of the feedpoint, and concentrations of up to 400 times the mean value were found when feed was added to a relatively stagnant mixing zone. This resulted in up to 20% lower biomass yield compared to the bench scale. Gradients also affected the by-product formation, resulting in acetate formation in the large-scale bioreactor. IPTG induction of a recombinant protein was shown to influence important cell parameters and considerably increased the yield of carbon dioxide per glucose added, indicating an increased maintenance. The product formation rate was, however, not notably affected by the scale-up.

215 citations

Journal ArticleDOI
TL;DR: In this paper, a 30 m3 cultivation of Saccharomyces cerevisiae grown in minimal medium to a cell density of 20 gl−1 was studied, with glucose as limiting component which was fed continuously to the process.
Abstract: Gradients of glucose in time and space are shown in a 30 m3 cultivation of Saccharomyces cerevisiae grown in minimal medium to a cell density of 20 gl−1. The fed-batch concept was used with glucose as the limiting component which was fed continuously to the process. As the mean glucose concentration declined throughout the process, the level of glucose was at all times different in three sampling ports (bottom/middle/top) of the reactor. These gradients were furthermore shown to depend on the feed position. This means that if the feed was supplied in the relatively stagnant mixing zone above the top impeller, the gradients were more pronounced than by feed in the well mixed bottom impeller zone. A rapid sampling system was constructed, and continuous glucose samples of every 0.15 s were analysed from a point of the reactor. Fifty samples were collected with this system, but the amount and frequency is possible to change. The results of these series show a variance of the glucose concentration where at one stage, a peak appeared of a relative difference in concentration of 40 mgl−1. The pattern of these rapid glucose fluctuations was shown to depend on the turbulence level at the location of the feed. It was shown, that the fluctuations were more pronounced when the feed was localised in a relatively stagnant area than in the well-mixed impeller area, where the deviation from the mean was negligible. The fluid flow, in the impeller (gassed and ungassed) and bulk area (ungassed) of the reactor, was characterised by turbulence measurements using thermal anemometry. These types of areas resembles well the different areas of sampling as mentioned above. The turbulent frequencies in these areas were in the range of 10−1 to 104 Hz with the highest amplitudes at low frequencies. The spectra depicts a uniform time scale for all zones, especially at the low frequencies. The dominance of low frequency, high amplitude flow variations and the observed short-time oscillations in substrate concentration support the hypothesis of substrate transport over fairly long distances without substantial mixing both in the impeller, but especially, in the bulk zone of the reactor.

181 citations

Journal ArticleDOI
TL;DR: Fed-batch production of recombinant beta-galactosidase in E. coli was studied with respect to the specific growth rate at induction, and it is proposed that production at highspecific growth rate becomes precursor-limited, while production at low specific growth rates is carbon- and/or energy-limited.
Abstract: Fed-batch production of recombinant beta-galactosidase in E. coli was studied with respect to the specific growth rate at induction. The cultivations were designed to induce protein production by IPTG at a glucose feed rate corresponding to high mu = 0.5 h(-1)) or low (mu = 0.1 h(-1)) specific growth rate. Protein production rate was approximately 100% higher at the higher specific growth rate, resulting in the accumulation of beta-galactosidase up to 30% of the total cell protein. Transcription analysis showed that beta-galactosidase-specific messenger RNA was immediately formed after induction (<5 min), but the amount was the same in both cases and was thus not the initial limiting factor. The content of ribosomes, as represented by rRNA, rapidly decreased with specific growth rate from a relative level of 100%, at the high specific growth rate, to 20% at the low specific growth rate. At high specific growth rate, ribosomes were additionally degraded upon induction due to the high production level. Translation therefore seemed to be the initial limiting factor of the protein synthesis capacity. The alarmone guanosine tetraphosphate increased at both high and low feed level inductions, indicating an induction-forced starvation of charged tRNA and/or glucose. The altered physiological status was also detected by the formation of acetic acid. However, the higher production rate resulted in high-level accumulation of acetic acid, which was absent at low feed rate production. Acetic acid production is thus coupled to the high product formation rate and is proposed to be due either to a precursor drain of Krebs cycle intermediates and a time lag before induction of the glyoxalate shunt, or to single amino acid overflow, since the model product is relatively poor in glycin and alanin. In conclusion, it is proposed that production at high specific growth rate becomes precursor-limited, while production at low specific growth rate is carbon- and/or energy-limited.

167 citations

Journal ArticleDOI
TL;DR: The process design strategies are dependent on environmental conditions and must take into account changes in physical parameters, medium design, and influx of limiting carbon source in fed-batch cultivation.
Abstract: This paper is a review of strategies to introduce protein into the liquid medium of Escherichia coli K-12 industrial production cells. The cell design strategies are generally based on one of two general mechanisms. The first strategy involves a two-stage translocation using active transporters in the cytoplasmic membrane followed by passive transport through the outer membrane. Passive transport is achieved through either external or internal destabilization of the E. coli structural components. The latter can be achieved by transplantation of destabilizing components (lysis proteins) that work by permeabilization of the outer membrane from the interior of the cell, or by using cells carrying mutations of structural components. Passive transport can also be achieved by a chemical, mechanical, or enzymatic permeabilization directed from outside the cell. The second strategy is realized through transplantation of proteins capable of active transport over one or both of the membranes. This involves the transplantation of secretion mechanisms into the K-12 cell from pathogenic E. coli as well as from other species. The process design strategies are dependent on environmental conditions and must take into account changes in physical parameters, medium design, and influx of limiting carbon source in fed-batch cultivation.

157 citations

Journal ArticleDOI
TL;DR: Adsorption with activated carbon is widely suggested as an option for the removal of organic micropollutants including pharmaceutically active compounds (PhACs) in wastewater and compared in parallel operation at three Swedish wastewater treatment plants found no considerable differences regarding pharmaceutical removal.

152 citations


Cited by
More filters
Journal ArticleDOI
01 Mar 2005-Yeast
TL;DR: The Pichia pastoris expression system is being used successfully for the production of various recombinant heterologous proteins and the importance of optimizing the physicochemical environment for efficient and maximal recombinant protein production in bioreactors and the role of process control in optimizing protein production is reviewed.
Abstract: The Pichia pastoris expression system is being used successfully for the production of various recombinant heterologous proteins. Recent developments with respect to the Pichia expression system have had an impact on not only the expression levels that can be achieved, but also the bioactivity of various heterologous proteins. We review here some of these recent developments, as well as strategies for reducing proteolytic degradation of the expressed recombinant protein at cultivation, cellular and protein levels. The problems associated with post-translational modifications performed on recombinant proteins by P. pastoris are discussed, including the effects on bioactivity and function of these proteins, and some engineering strategies for minimizing unwanted glycosylations. We pay particular attention to the importance of optimizing the physicochemical environment for efficient and maximal recombinant protein production in bioreactors and the role of process control in optimizing protein production is reviewed. Finally, future aspects of the use of the P. pastoris expression system are discussed with regard to the production of complex membrane proteins, such as G protein-coupled receptors, and the industrial and clinical importance of these proteins.

1,237 citations

Journal ArticleDOI
TL;DR: Issues addressed include expression systems in general, selection of host strain, mRNA stability, codon bias, inclusion body formation and prevention, fusion protein technology and site-specific proteolysis, compartment directed secretion and finally co-overexpression technology.

996 citations

Journal ArticleDOI
TL;DR: An overview of the most commonly used promoter systems for recombinant proteins, including Bacillus brevis, Bacillusmegaterium, Bacillussubtilis, Caulobacter crescentus, other strains, and, most importantly, Escherichia coli BL21 and E. coli K12 and their derivatives are presented.
Abstract: During the proteomics period, the growth in the use of recombinant proteins has increased greatly in the recent years. Bacterial systems remain most attractive due to low cost, high productivity, and rapid use. However, the rational choice of the adequate promoter system and host for a specific protein of interest remains difficult. This review gives an overview of the most commonly used systems: As hosts, Bacillus brevis, Bacillusmegaterium, Bacillussubtilis, Caulobacter crescentus, other strains, and, most importantly, Escherichia coli BL21 and E. coli K12 and their derivatives are presented. On the promoter side, the main features of the l-arabinose inducible araBAD promoter (PBAD), the lac promoter, the l-rhamnose inducible rhaPBAD promoter, the T7 RNA polymerase promoter, the trc and tac promoter, the lambda phage promoter pL, and the anhydrotetracycline-inducible tetA promoter/operator are summarized.

985 citations

Journal ArticleDOI
Jong Hyun Choi1, Sang Yup Lee1
TL;DR: Recent advances in secretory and extracellular production of recombinant proteins using E. coli are discussed, including the twin-arginine translocation system, which has recently been employed for the efficient secretion of folded proteins.
Abstract: Escherichia coli is one of the most widely used hosts for the production of recombinant proteins. However, there are often problems in recovering substantial yields of correctly folded proteins. One approach to solve these problems is to have recombinant proteins secreted into the periplasmic space or culture medium. The secretory production of recombinant proteins has several advantages, such as simplicity of purification, avoidance of protease attack and N-terminal Met extension, and a better chance of correct protein folding. In addition to the well-established Sec system, the twin-arginine translocation (TAT) system has recently been employed for the efficient secretion of folded proteins. Various strategies for the extracellular production of recombinant proteins have also been developed. For the secretory production of complex proteins, periplasmic chaperones and protease can be manipulated to improve the yields of secreted proteins. This review discusses recent advances in secretory and extracellular production of recombinant proteins using E. coli.

628 citations

Journal ArticleDOI
TL;DR: It is shown how the shift in metabolic efficiency originates from a tradeoff between investments in enzyme synthesis and metabolic yields for alternative catabolic pathways, and elucidate how the optimization of growth by natural selection shapes growth strategies.
Abstract: The growth rate-dependent regulation of cell size, ribosomal content, and metabolic efficiency follows a common pattern in unicellular organisms: with increasing growth rates, cell size and ribosomal content increase and a shift to energetically inefficient metabolism takes place. The latter two phenomena are also observed in fast growing tumour cells and cell lines. These patterns suggest a fundamental principle of design. In biology such designs can often be understood as the result of the optimization of fitness. Here we show that in basic models of self-replicating systems these patterns are the consequence of maximizing the growth rate. Whereas most models of cellular growth consider a part of physiology, for instance only metabolism, the approach presented here integrates several subsystems to a complete self-replicating system. Such models can yield fundamentally different optimal strategies. In particular, it is shown how the shift in metabolic efficiency originates from a tradeoff between investments in enzyme synthesis and metabolic yields for alternative catabolic pathways. The models elucidate how the optimization of growth by natural selection shapes growth strategies.

580 citations