scispace - formally typeset
Search or ask a question
Author

Gene E. Likens

Bio: Gene E. Likens is an academic researcher from Institute of Ecosystem Studies. The author has contributed to research in topics: Ecosystem & Experimental forest. The author has an hindex of 119, co-authored 464 publications receiving 58487 citations. Previous affiliations of Gene E. Likens include Dartmouth College & Institute of Education Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review of available scientific evidence shows that human alterations of the nitrogen cycle have approximately doubled the rate of nitrogen input into the terrestrial nitrogen cycle, with these rates still increasing; increased concentrations of the potent greenhouse gas N 2O globally, and increased concentration of other oxides of nitrogen that drive the formation of photochemical smog over large regions of Earth.
Abstract: Nitrogen is a key element controlling the species composition, diversity, dynamics, and functioning of many terrestrial, freshwater, and marine ecosystems. Many of the original plant species living in these ecosystems are adapted to, and function optimally in, soils and solutions with low levels of available nitrogen. The growth and dynamics of herbivore populations, and ultimately those of their predators, also are affected by N. Agriculture, combustion of fossil fuels, and other human activities have altered the global cycle of N substantially, generally increasing both the availability and the mobility of N over large regions of Earth. The mobility of N means that while most deliberate applications of N occur locally, their influence spreads regionally and even globally. Moreover, many of the mobile forms of N themselves have environmental consequences. Although most nitrogen inputs serve human needs such as agricultural production, their environmental conse- quences are serious and long term. Based on our review of available scientific evidence, we are certain that human alterations of the nitrogen cycle have: 1) approximately doubled the rate of nitrogen input into the terrestrial nitrogen cycle, with these rates still increasing; 2) increased concentrations of the potent greenhouse gas N 2O globally, and increased concentrations of other oxides of nitrogen that drive the formation of photochemical smog over large regions of Earth; 3) caused losses of soil nutrients, such as calcium and potassium, that are essential for the long-term maintenance of soil fertility; 4) contributed substantially to the acidification of soils, streams, and lakes in several regions; and 5) greatly increased the transfer of nitrogen through rivers to estuaries and coastal oceans. In addition, based on our review of available scientific evidence we are confident that human alterations of the nitrogen cycle have: 6) increased the quantity of organic carbon stored within terrestrial ecosystems; 7) accelerated losses of biological diversity, especially losses of plants adapted to efficient use of nitrogen, and losses of the animals and microorganisms that depend on them; and 8) caused changes in the composition and functioning of estuarine and nearshore ecosystems, and contributed to long-term declines in coastal marine fisheries.

5,729 citations

Journal ArticleDOI
20 Feb 2009-Science
TL;DR: Improvements in the water quality of many freshwater and most coastal marine ecosystems requires reductions in both nitrogen and phosphorus inputs.
Abstract: Improvements in the water quality of many freshwater and most coastal marine ecosystems requires reductions in both nitrogen and phosphorus inputs.

2,773 citations

Book
01 Jan 1977
TL;DR: In this article, Biogeochemistry of a forested ecosystem, Biogeochemical properties of forested ecosystems, and biogeochemistry in forested environments, the authors present a biogeochemical model of forest ecosystems.
Abstract: Biogeochemistry of a forested ecosystem , Biogeochemistry of a forested ecosystem , مرکز فناوری اطلاعات و اطلاع رسانی کشاورزی

1,613 citations

Journal ArticleDOI
TL;DR: In this paper, an energy budget for a small undisturbed second-order stream in northeastern United States is presented, in which all input and output fluxes of potential energy as organic matter are considered, and a conceptual scheme is presented by which import, export, photosynthesis and respiration may be used to describe the functional dynamics and developmental processes of ecosystems.
Abstract: An annual energy budget is presented for Bear Brook, a small undisturbed second-order stream in northeastern United States. The ecosystem approach, in which all input and output fluxes of potential energy as organic matter are considered, is used to describe the dynamics of energy flow in a 1,700-m segment of the stream. The annual input of energy to the system is 6,039 Kcal/m2. Over 99% of this is allochthonous, from the surrounding forested watershed or from upstream areas. Autochthonous primary production by mosses accounts for less than 1% of the total energy available to the ecosystem. Algae and vascular hydrophytes are absent from the stream. Meteorologic inputs (litter and throughfall) from the adjacent forest account for 44% of annual energy input. Most of this is in particulate form. The remaining 56% of input enters by geologic vectors (inflowing surface and subsurface waters). Eighty-three per cent of the geologic input and 47% of the total input of energy occur as dissolved organic matter. Approximately 4,730 Kcal/m2 of organic detritus, nearly equally divided between leaves and branches, is stored within the system. The size of this detritus reservoir is stable from year to year. The turnover time of the branch compartment is about 4.2 years; of the leaf compartment, about 1 year. Although much of the annual input of energy is in a dissolved state, dissolved organic matter does not tend to accumulate in the system and displays a very rapid rate of turnover. Sixty-six per cent of annual energy input is exported to downstream areas in stream water. The remaining 34% is lost as heat through consumer activity. Bear Brook is a strongly heterotrophic steady-state system in which import and export of organic matter play a significant role. A conceptual scheme is presented by which import, export, photosynthesis, and respiration may be used to describe the functional dynamics and developmental processes of ecosystems.

1,365 citations


Cited by
More filters
Journal ArticleDOI
15 May 1997-Nature
TL;DR: In this paper, the authors have estimated the current economic value of 17 ecosystem services for 16 biomes, based on published studies and a few original calculations, for the entire biosphere, the value (most of which is outside the market) is estimated to be in the range of US$16-54 trillion (10^(12)) per year, with an average of US $33 trillion per year.
Abstract: The services of ecological systems and the natural capital stocks that produce them are critical to the functioning of the Earth's life-support system. They contribute to human welfare, both directly and indirectly, and therefore represent part of the total economic value of the planet. We have estimated the current economic value of 17 ecosystem services for 16 biomes, based on published studies and a few original calculations. For the entire biosphere, the value (most of which is outside the market) is estimated to be in the range of US$16-54 trillion (10^(12)) per year, with an average of US$33 trillion per year. Because of the nature of the uncertainties, this must be considered a minimum estimate. Global gross national product total is around US$18 trillion per year.

18,139 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: Suggestions are offered to statisticians and editors of ecological journals as to how ecologists' under- standing of experimental design and statistics might be improved.
Abstract: Pseudoreplication is defined. as the use of inferential statistics to test for treatment effects with data from experiments where either treatments are not replicated (though samples may be) or replicates are not statistically independent. In ANOVA terminology, it is the testing for treatment effects with an error term inappropriate to the hypothesis being considered. Scrutiny of 176 experi- mental studies published between 1960 and the present revealed that pseudoreplication occurred in 27% of them, or 48% of all such studies that applied inferential statistics. The incidence of pseudo- replication is especially high in studies of marine benthos and small mammals. The critical features of controlled experimentation are reviewed. Nondemonic intrusion is defined as the impingement of chance events on an experiment in progress. As a safeguard against both it and preexisting gradients, interspersion of treatments is argued to be an obligatory feature of good design. Especially in small experiments, adequate interspersion can sometimes be assured only by dispensing with strict random- ization procedures. Comprehension of this conflict between interspersion and randomization is aided by distinguishing pre-layout (or conventional) and layout-specifit alpha (probability of type I error). Suggestions are offered to statisticians and editors of ecological j oumals as to how ecologists' under- standing of experimental design and statistics might be improved.

7,808 citations

Journal ArticleDOI
TL;DR: These mutants—the ‘Keio collection’—provide a new resource not only for systematic analyses of unknown gene functions and gene regulatory networks but also for genome‐wide testing of mutational effects in a common strain background, E. coli K‐12 BW25113.
Abstract: We have systematically made a set of precisely defined, single-gene deletions of all nonessential genes in Escherichia coli K-12. Open-reading frame coding regions were replaced with a kanamycin cassette flanked by FLP recognition target sites by using a one-step method for inactivation of chromosomal genes and primers designed to create in-frame deletions upon excision of the resistance cassette. Of 4288 genes targeted, mutants were obtained for 3985. To alleviate problems encountered in high-throughput studies, two independent mutants were saved for every deleted gene. These mutants-the 'Keio collection'-provide a new resource not only for systematic analyses of unknown gene functions and gene regulatory networks but also for genome-wide testing of mutational effects in a common strain background, E. coli K-12 BW25113. We were unable to disrupt 303 genes, including 37 of unknown function, which are candidates for essential genes. Distribution is being handled via GenoBase (http://ecoli.aist-nara.ac.jp/).

7,428 citations

Journal ArticleDOI
TL;DR: Mark as discussed by the authors provides parameter estimates from marked animals when they are re-encountered at a later time as dead recoveries, or live recaptures or re-sightings.
Abstract: MARK provides parameter estimates from marked animals when they are re-encountered at a later time as dead recoveries, or live recaptures or re-sightings. The time intervals between re-encounters do not have to be equal. More than one attribute group of animals can be modelled. The basic input to MARK is the encounter history for each animal. MARK can also estimate the size of closed populations. Parameters can be constrained to be the same across re-encounter occasions, or by age, or group, using the parameter index matrix. A set of common models for initial screening of data are provided. Time effects, group effects, time x group effects and a null model of none of the above, are provided for each parameter. Besides the logit function to link the design matrix to the parameters of the model, other link functions include the log—log, complimentary log—log, sine, log, and identity. The estimates of model parameters are computed via numerical maximum likelihood techniques. The number of parameters that are...

7,128 citations