scispace - formally typeset
Search or ask a question
Author

Geoff DiMego

Bio: Geoff DiMego is an academic researcher from National Oceanic and Atmospheric Administration. The author has contributed to research in topics: Ensemble forecasting & Forecast skill. The author has an hindex of 10, co-authored 17 publications receiving 3134 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The North American Regional Reanalysis (NARR) project as mentioned in this paper uses the NCEP Eta model and its Data Assimilation System (at 32-km-45-layer resolution with 3-hourly output) to capture regional hydrological cycle, the diurnal cycle and other important features of weather and climate variability.
Abstract: In 1997, during the late stages of production of NCEP–NCAR Global Reanalysis (GR), exploration of a regional reanalysis project was suggested by the GR project's Advisory Committee, “particularly if the RDAS [Regional Data Assimilation System] is significantly better than the global reanalysis at capturing the regional hydrological cycle, the diurnal cycle and other important features of weather and climate variability.” Following a 6-yr development and production effort, NCEP's North American Regional Reanalysis (NARR) project was completed in 2004, and data are now available to the scientific community. Along with the use of the NCEP Eta model and its Data Assimilation System (at 32-km–45-layer resolution with 3-hourly output), the hallmarks of the NARR are the incorporation of hourly assimilation of precipitation, which leverages a comprehensive precipitation analysis effort, the use of a recent version of the Noah land surface model, and the use of numerous other datasets that are additional or improv...

3,080 citations

Journal ArticleDOI
TL;DR: In this article, a description of the RTMA applied to the 5-km resolution conterminous U.S. grid of the National Digital Forecast Database is given, and a brief discussion of the remapping of the NCEP stage II quantitative precipitation amount and NESDIS Geostationary Operational Environmental Satellite (GOES) sounder effective cloud amount to the five-km grid is offered.
Abstract: In 2006, the National Centers for Environmental Prediction (NCEP) implemented the Real-Time Mesoscale Analysis (RTMA) in collaboration with the Earth System Research Laboratory and the National Environmental, Satellite, and Data Information Service (NESDIS). In this work, a description of the RTMA applied to the 5-km resolution conterminous U.S. grid of the National Digital Forecast Database is given. Its two-dimensional variational data assimilation (2DVAR) component used to analyze near-surface observations is described in detail, and a brief discussion of the remapping of the NCEP stage II quantitative precipitation amount and NESDIS Geostationary Operational Environmental Satellite (GOES) sounder effective cloud amount to the 5-km grid is offered. Terrain-following background error covariances are used with the 2DVAR approach, which produces gridded fields of 2-m temperature, 2-m specific humidity, 2-m dewpoint, 10-m U and V wind components, and surface pressure. The estimate of the analysis u...

109 citations

Journal ArticleDOI
TL;DR: In this article, the performance of low visibility/fog predictions from the current operational 12-km-NAM, 13-km RUC and 32-km WRF-NMM models at the National Centers for Environmental Prediction (NCEP) was evaluated.
Abstract: Based on the visibility analysis data during November 2009 through April 2010 over North America from the Aviation Digital Database Service (ADDS), the performance of low visibility/fog predictions from the current operational 12 km-NAM, 13 km-RUC and 32 km-WRF-NMM models at the National Centers for Environmental Prediction (NCEP) was evaluated. The evaluation shows that the performance of the low visibility/fog forecasts from these models is still poor in comparison to those of precipitation forecasts from the same models. In order to improve the skill of the low visibility/fog prediction, three efforts have been made at NCEP, including application of a rule-based fog detection scheme, extension of the NCEP Short Range Ensemble Forecast System (SREF) to fog ensemble probabilistic forecasts, and a combination of these two applications. How to apply these techniques in fog prediction is described and evaluated with the same visibility analysis data over the same period of time. The evaluation results demonstrate that using the multi-rule-based fog detection scheme significantly improves the fog forecast skill for all three models relative to visibility-diagnosed fog prediction, and with a combination of both rule-based fog detection and the ensemble technique, the performance skill of fog forecasting can be further raised.

68 citations

Journal Article
TL;DR: The NCEP multi-initial condition (multi-IC) and multi-model Short Range Ensemble Forecasting (SREF) system has been operationally running since May 2001 as mentioned in this paper.
Abstract: The NCEP multi-Initial Condition (multi-IC) and multi-model Short Range Ensemble Forecasting (SREF) system has been operationally running since May 2001 (Du et al 2003) Recent studies have shown the benefits of adding physics perturbation members to an ensemble system (Stensrud et al 2000) Also, ensemble members clustering by model is a main concern of field forecasters Therefore, a new physics ensemble system has been developed and is now under testing and evaluation This paper summarizes the NCEP SREF system and reports on some of our findings from a comparison study between a multi-IC and multi-physics ensemble approach for short range forecasts (1-3 days)

31 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the impact of model domain extent and the specification of lateral boundary conditions on the forecast quality of air pollution constituents in a specific region of interest using a developmental version of the national Air Quality Forecast System (AQFS).
Abstract: This study investigates the impact of model domain extent and the specification of lateral boundary conditions on the forecast quality of air pollution constituents in a specific region of interest. A developmental version of the national Air Quality Forecast System (AQFS) has been used in this study. The AQFS is based on the NWS/NCEP Eta Model (recently renamed the North American Mesoscale Model) coupled with the U.S. Environmental Protection Agency Community Multiscale Air Quality (CMAQ) model. This coupled Eta–CMAQ modeling system provided experimental air quality forecasts for the northeastern region of the United States during the summers of 2003 and 2004. The initial forecast over the northeastern United States was approved for operational deployment in September 2004. The AQFS will provide forecast coverage for the entire United States in the near future. In a continuing program of phased development to extend the geographical coverage of the forecast, the developmental version of AQFS has...

23 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the MERRA-2 system and various performance metrics is provided, including the assimilation of aerosol observations, several improvements to the representation of the stratosphere including ozone, and improved representations of cryospheric processes.
Abstract: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), is the latest atmospheric reanalysis of the modern satellite era produced by NASA’s Global Modeling and Assimilation Office (GMAO). MERRA-2 assimilates observation types not available to its predecessor, MERRA, and includes updates to the Goddard Earth Observing System (GEOS) model and analysis scheme so as to provide a viable ongoing climate analysis beyond MERRA’s terminus. While addressing known limitations of MERRA, MERRA-2 is also intended to be a development milestone for a future integrated Earth system analysis (IESA) currently under development at GMAO. This paper provides an overview of the MERRA-2 system and various performance metrics. Among the advances in MERRA-2 relevant to IESA are the assimilation of aerosol observations, several improvements to the representation of the stratosphere including ozone, and improved representations of cryospheric processes. Other improvements in the quality of M...

4,524 citations

Journal ArticleDOI
TL;DR: The NCEP Climate Forecast System Reanalysis (CFSR) was completed for the 31-yr period from 1979 to 2009, in January 2010 as mentioned in this paper, which was designed and executed as a global, high-resolution coupled atmosphere-ocean-land surface-sea ice system to provide the best estimate of the state of these coupled domains over this period.
Abstract: The NCEP Climate Forecast System Reanalysis (CFSR) was completed for the 31-yr period from 1979 to 2009, in January 2010. The CFSR was designed and executed as a global, high-resolution coupled atmosphere–ocean–land surface–sea ice system to provide the best estimate of the state of these coupled domains over this period. The current CFSR will be extended as an operational, real-time product into the future. New features of the CFSR include 1) coupling of the atmosphere and ocean during the generation of the 6-h guess field, 2) an interactive sea ice model, and 3) assimilation of satellite radiances by the Gridpoint Statistical Interpolation (GSI) scheme over the entire period. The CFSR global atmosphere resolution is ~38 km (T382) with 64 levels extending from the surface to 0.26 hPa. The global ocean's latitudinal spacing is 0.25° at the equator, extending to a global 0.5° beyond the tropics, with 40 levels to a depth of 4737 m. The global land surface model has four soil levels and the global sea ice m...

4,520 citations

Journal ArticleDOI
TL;DR: The Hybrid Single Particle Lagrangian Integrated Trajectory model (HYSPLIT) as mentioned in this paper is one of the most widely used models for atmospheric trajectory and dispersion calculations.
Abstract: The Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT), developed by NOAA’s Air Resources Laboratory, is one of the most widely used models for atmospheric trajectory and dispersion calculations. We present the model’s historical evolution over the last 30 years from simple hand-drawn back trajectories to very sophisticated computations of transport, mixing, chemical transformation, and deposition of pollutants and hazardous materials. We highlight recent applications of the HYSPLIT modeling system, including the simulation of atmospheric tracer release experiments, radionuclides, smoke originated from wild fires, volcanic ash, mercury, and wind-blown dust.

3,875 citations

01 Jan 1989
TL;DR: In this article, a two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea.
Abstract: Abstract A two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea. The domain includes a representation of part of Borneo as well as the sea so that the model can simulate the initiation of convection. Also included in the model are parameterizations of mesoscale ice phase and moisture processes and longwave and shortwave radiation with a diurnal cycle. This allows use of the model to test the relative importance of various heating mechanisms to the stratiform cloud deck, which typically occupies several hundred kilometers of the domain. Frank and Cohen's cumulus parameterization scheme is employed to represent vital unresolved vertical transports in the convective area. The major conclusions are: Ice phase processes are important in determining the level of maximum large-scale heating and vertical motion because there is a strong anvil componen...

3,813 citations

Journal ArticleDOI
TL;DR: In this paper, the authors integrate perspectives from meteorologists, climatologists, statisticians, and hydrologists to identify generic end user (in particular, impact modeler) needs and to discuss downscaling capabilities and gaps.
Abstract: Precipitation downscaling improves the coarse resolution and poor representation of precipitation in global climate models and helps end users to assess the likely hydrological impacts of climate change. This paper integrates perspectives from meteorologists, climatologists, statisticians, and hydrologists to identify generic end user (in particular, impact modeler) needs and to discuss downscaling capabilities and gaps. End users need a reliable representation of precipitation intensities and temporal and spatial variability, as well as physical consistency, independent of region and season. In addition to presenting dynamical downscaling, we review perfect prognosis statistical downscaling, model output statistics, and weather generators, focusing on recent developments to improve the representation of space-time variability. Furthermore, evaluation techniques to assess downscaling skill are presented. Downscaling adds considerable value to projections from global climate models. Remaining gaps are uncertainties arising from sparse data; representation of extreme summer precipitation, subdaily precipitation, and full precipitation fields on fine scales; capturing changes in small-scale processes and their feedback on large scales; and errors inherited from the driving global climate model.

1,443 citations