scispace - formally typeset
Search or ask a question
Author

Geoffrey B. McFadden

Bio: Geoffrey B. McFadden is an academic researcher from National Institute of Standards and Technology. The author has contributed to research in topics: Directional solidification & Instability. The author has an hindex of 42, co-authored 169 publications receiving 8800 citations. Previous affiliations of Geoffrey B. McFadden include University of Southampton & New York University.


Papers
More filters
Journal ArticleDOI
TL;DR: Issues including sharp-interface analyses that relate these models to the classical free-boundary problem, computational approaches to describe interfacial phenomena, and models of fully miscible fluids are addressed.
Abstract: We review the development of diffuse-interface models of hydrodynamics and their application to a wide variety of interfacial phenomena. These models have been applied successfully to situations in which the physical phenomena of interest have a length scale commensurate with the thickness of the interfacial region (e.g. near-critical interfacial phenomena or small-scale flows such as those occurring near contact lines) and fluid flows involving large interface deformations and/or topological changes (e.g. breakup and coalescence events associated with fluid jets, droplets, and large-deformation waves). We discuss the issues involved in formulating diffuse-interface models for single-component and binary fluids. Recent applications and computations using these models are discussed in each case. Further, we address issues including sharp-interface analyses that relate these models to the classical free-boundary problem, computational approaches to describe interfacial phenomena, and models of fully miscible fluids.

1,948 citations

Journal ArticleDOI
TL;DR: A phase-field model to describe isothermal phase transitions between ideal binary-alloy liquid and solid phases is presented, and an asymptotic analysis as the gradient energy coefficient of the phase field becomes small shows that the model recovers classical sharp-interface models of alloy solidification when the interfacial layers are thin.
Abstract: In this paper we present a phase-field model to describe isothermal phase transitions between ideal binary-alloy liquid and solid phases. Governing equations are developed for the temporal and spatial variation of the phase field, which identifies the local state or phase, and for the composition. An asymptotic analysis as the gradient energy coefficient of the phase field becomes small shows that our model recovers classical sharp-interface models of alloy solidification when the interfacial layers are thin, and we relate the parameters appearing in the phase-field model to material and growth parameters in real systems. We identify three stages of temporal evolution for the governing equations: the first corresponds to interfacial genesis, which occurs very rapidly; the second to interfacial motion controlled by diffusion and the local energy difference across the interface; the last takes place on a long time scale in which curvature effects are important, and corresponds to Ostwald ripening. We also present results of numerical calculations.

811 citations

01 Nov 1992
TL;DR: In this article, a class of phase-field models for crystallization of a pure substance from its melt are presented, which are based on an entropy functional, and are therefore thermodynamically consistent inasmuch as they guarantee spatially local positive entropy production.
Abstract: In an effort to unify the various phase-field models that have been used to study solidification, we have developed a class of phase-field models for crystallization of a pure substance from its melt. These models are based on an entropy functional, as in the treatment of Penrose and Fife, and are therefore thermodynamically consistent inasmuch as they guarantee spatially local positive entropy production. General conditions are developed to ensure that the phase field takes on constant values in the bulk phases. Specific forms of a phase-field function are chosen to produce two models that bear strong resemblances to the models proposed by Langer and Kobayashi. Our models contain additional nonlinear functions of the phase field that are necessary to guarantee thermodynamic consistency.

459 citations

Journal ArticleDOI
TL;DR: In this paper, a class of phase-field models for crystallization of a pure substance from its melt are presented, which are based on an entropy functional, and are therefore thermodynamically consistent inasmuch as they guarantee spatially local positive entropy production.

451 citations

Journal ArticleDOI
TL;DR: The method of matched asymptotic expansions is used to recover the appropriate anisotropic form of the Gibbs-Thomson equation in the sharp-interface limit in which the width of the diffuse interface is thin compared to its local radius of curvature.
Abstract: The inclusion of anisotropic surface free energy and anisotropic linear interface kinetics in phase-field models is studied for the solidification of a pure material. The formulation is described for a two-dimensional system with a smooth crystal-melt interface and for a surface free energy that varies smoothly with orientation, in which case a quite general dependence of the surface free energy and kinetic coefficient on orientation can be treated; it is assumed that the anisotropy is mild enough that missing orientations do not occur. The method of matched asymptotic expansions is used to recover the appropriate anisotropic form of the Gibbs-Thomson equation in the sharp-interface limit in which the width of the diffuse interface is thin compared to its local radius of curvature. It is found that the surface free energy and the thickness of the diffuse interface have the same anisotropy, whereas the kinetic coefficient has an anisotropy characterized by the product of the interface thickness with the intrinsic mobility of the phase field.

309 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the lattice Boltzmann method, a parallel and efficient algorithm for simulating single-phase and multiphase fluid flows and for incorporating additional physical complexities, is presented.
Abstract: We present an overview of the lattice Boltzmann method (LBM), a parallel and efficient algorithm for simulating single-phase and multiphase fluid flows and for incorporating additional physical complexities. The LBM is especially useful for modeling complicated boundary conditions and multiphase interfaces. Recent extensions of this method are described, including simulations of fluid turbulence, suspension flows, and reaction diffusion systems.

6,565 citations

Journal ArticleDOI
TL;DR: Van Kampen as mentioned in this paper provides an extensive graduate-level introduction which is clear, cautious, interesting and readable, and could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes.
Abstract: N G van Kampen 1981 Amsterdam: North-Holland xiv + 419 pp price Dfl 180 This is a book which, at a lower price, could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes, as well as those who just enjoy a beautifully written book. It provides an extensive graduate-level introduction which is clear, cautious, interesting and readable.

3,647 citations

Journal ArticleDOI
TL;DR: The term immersed boundary (IB) method is used to encompass all such methods that simulate viscous flows with immersed (or embedded) boundaries on grids that do not conform to the shape of these boundaries.
Abstract: The term “immersed boundary method” was first used in reference to a method developed by Peskin (1972) to simulate cardiac mechanics and associated blood flow. The distinguishing feature of this method was that the entire simulation was carried out on a Cartesian grid, which did not conform to the geometry of the heart, and a novel procedure was formulated for imposing the effect of the immersed boundary (IB) on the flow. Since Peskin introduced this method, numerous modifications and refinements have been proposed and a number of variants of this approach now exist. In addition, there is another class of methods, usually referred to as “Cartesian grid methods,” which were originally developed for simulating inviscid flows with complex embedded solid boundaries on Cartesian grids (Berger & Aftosmis 1998, Clarke et al. 1986, Zeeuw & Powell 1991). These methods have been extended to simulate unsteady viscous flows (Udaykumar et al. 1996, Ye et al. 1999) and thus have capabilities similar to those of IB methods. In this review, we use the term immersed boundary (IB) method to encompass all such methods that simulate viscous flows with immersed (or embedded) boundaries on grids that do not conform to the shape of these boundaries. Furthermore, this review focuses mainly on IB methods for flows with immersed solid boundaries. Application of these and related methods to problems with liquid-liquid and liquid-gas boundaries was covered in previous reviews by Anderson et al. (1998) and Scardovelli & Zaleski (1999). Consider the simulation of flow past a solid body shown in Figure 1a. The conventional approach to this would employ structured or unstructured grids that conform to the body. Generating these grids proceeds in two sequential steps. First, a surface grid covering the boundaries b is generated. This is then used as a boundary condition to generate a grid in the volume f occupied by the fluid. If a finite-difference method is employed on a structured grid, then the differential form of the governing equations is transformed to a curvilinear coordinate system aligned with the grid lines (Ferziger & Peric 1996). Because the grid conforms to the surface of the body, the transformed equations can then be discretized in the

3,184 citations

Journal ArticleDOI
TL;DR: In this article, a unified mathematical theory is presented that takes advantage of the disparity of the length scales and is based on the asymptotic procedure of reduction of the full set of governing equations and boundary conditions to a simplified, highly nonlinear, evolution equation or to a set of equations.
Abstract: Macroscopic thin liquid films are entities that are important in biophysics, physics, and engineering, as well as in natural settings. They can be composed of common liquids such as water or oil, rheologically complex materials such as polymers solutions or melts, or complex mixtures of phases or components. When the films are subjected to the action of various mechanical, thermal, or structural factors, they display interesting dynamic phenomena such as wave propagation, wave steepening, and development of chaotic responses. Such films can display rupture phenomena creating holes, spreading of fronts, and the development of fingers. In this review a unified mathematical theory is presented that takes advantage of the disparity of the length scales and is based on the asymptotic procedure of reduction of the full set of governing equations and boundary conditions to a simplified, highly nonlinear, evolution equation or to a set of equations. As a result of this long-wave theory, a mathematical system is obtained that does not have the mathematical complexity of the original free-boundary problem but does preserve many of the important features of its physics. The basics of the long-wave theory are explained. If, in addition, the Reynolds number of the flow is not too large, the analogy with Reynolds's theory of lubrication can be drawn. A general nonlinear evolution equation or equations are then derived and various particular cases are considered. Each case contains a discussion of the linear stability properties of the base-state solutions and of the nonlinear spatiotemporal evolution of the interface (and other scalar variables, such as temperature or solute concentration). The cases reducing to a single highly nonlinear evolution equation are first examined. These include: (a) films with constant interfacial shear stress and constant surface tension, (b) films with constant surface tension and gravity only, (c) films with van der Waals (long-range molecular) forces and constant surface tension only, (d) films with thermocapillarity, surface tension, and body force only, (e) films with temperature-dependent physical properties, (f) evaporating/condensing films, (g) films on a thick substrate, (h) films on a horizontal cylinder, and (i) films on a rotating disc. The dynamics of the films with a spatial dependence of the base-state solution are then studied. These include the examples of nonuniform temperature or heat flux at liquid-solid boundaries. Problems which reduce to a set of nonlinear evolution equations are considered next. Those include (a) the dynamics of free liquid films, (b) bounded films with interfacial viscosity, and (c) dynamics of soluble and insoluble surfactants in bounded and free films. The spreading of drops on a solid surface and moving contact lines, including effects of heat and mass transport and van der Waals attractions, are then addressed. Several related topics such as falling films and sheets and Hele-Shaw flows are also briefly discussed. The results discussed give motivation for the development of careful experiments which can be used to test the theories and exhibit new phenomena.

2,689 citations

Journal ArticleDOI
TL;DR: The phase-field method has recently emerged as a powerful computational approach to modeling and predicting mesoscale morphological and microstructure evolution in materials as discussed by the authors, which is able to predict the evolution of arbitrary morphologies and complex microstructures without explicitly tracking the positions of interfaces.
Abstract: ■ Abstract The phase-field method has recently emerged as a powerful computational approach to modeling and predicting mesoscale morphological and microstructure evolution in materials. It describes a microstructure using a set of conserved and nonconserved field variables that are continuous across the interfacial regions. The temporal and spatial evolution of the field variables is governed by the Cahn-Hilliard nonlinear diffusion equation and the Allen-Cahn relaxation equation. With the fundamental thermodynamic and kinetic information as the input, the phase-field method is able to predict the evolution of arbitrary morphologies and complex microstructures without explicitly tracking the positions of interfaces. This paper briefly reviews the recent advances in developing phase-field models for various materials processes including solidification, solid-state structural phase transformations, grain growth and coarsening, domain evolution in thin films, pattern formation on surfaces, dislocation microstructures, crack propagation, and electromigration.

2,334 citations