scispace - formally typeset
Search or ask a question
Author

Geoffrey C. Gurtner

Other affiliations: Duke University, York University, Brigham and Women's Hospital  ...read more
Bio: Geoffrey C. Gurtner is an academic researcher from Stanford University. The author has contributed to research in topics: Wound healing & Stem cell. The author has an hindex of 76, co-authored 423 publications receiving 25985 citations. Previous affiliations of Geoffrey C. Gurtner include Duke University & York University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that SDF-1 gene expression is regulated by the transcription factor hypoxia-inducible factor-1 (HIF-1) in endothelial cells, resulting in selective in vivo expression of S DF-1 in ischemic tissue in direct proportion to reduced oxygen tension.
Abstract: The trafficking of circulating stem and progenitor cells to areas of tissue damage is poorly understood. The chemokine stromal cell-derived factor-1 (SDF-1 or CXCL12) mediates homing of stem cells to bone marrow by binding to CXCR4 on circulating cells. SDF-1 and CXCR4 are expressed in complementary patterns during embryonic organogenesis and guide primordial stem cells to sites of rapid vascular expansion. However, the regulation of SDF-1 and its physiological role in peripheral tissue repair remain incompletely understood. Here we show that SDF-1 gene expression is regulated by the transcription factor hypoxia-inducible factor-1 (HIF-1) in endothelial cells, resulting in selective in vivo expression of SDF-1 in ischemic tissue in direct proportion to reduced oxygen tension. HIF-1-induced SDF-1 expression increases the adhesion, migration and homing of circulating CXCR4-positive progenitor cells to ischemic tissue. Blockade of SDF-1 in ischemic tissue or CXCR4 on circulating cells prevents progenitor cell recruitment to sites of injury. Discrete regions of hypoxia in the bone marrow compartment also show increased SDF-1 expression and progenitor cell tropism. These data show that the recruitment of CXCR4-positive progenitor cells to regenerating tissues is mediated by hypoxic gradients via HIF-1-induced expression of SDF-1.

2,552 citations

Journal ArticleDOI
14 May 2008-Nature
TL;DR: Knowing how organisms retain the ability to regenerate tissue throughout adult life might help to unlock latent regenerative pathways in humans, which would change medical practice as much as the introduction of antibiotics did in the twentieth century.
Abstract: The repair of wounds is one of the most complex biological processes that occur during human life. After an injury, multiple biological pathways immediately become activated and are synchronized to respond. In human adults, the wound repair process commonly leads to a non-functioning mass of fibrotic tissue known as a scar. By contrast, early in gestation, injured fetal tissues can be completely recreated, without fibrosis, in a process resembling regeneration. Some organisms, however, retain the ability to regenerate tissue throughout adult life. Knowledge gained from studying such organisms might help to unlock latent regenerative pathways in humans, which would change medical practice as much as the introduction of antibiotics did in the twentieth century.

2,513 citations

Journal ArticleDOI
TL;DR: The immense economic and social impact of wounds in the authors' society calls for allocation of a higher level of attention and resources to understand biological mechanisms underlying cutaneous wound complications.
Abstract: In the United States, chronic wounds affect 6.5 million patients. An estimated excess of US$25 billion is spent annually on treatment of chronic wounds and the burden is rapidly growing due to increasing health care costs, an aging population and a sharp rise in the incidence of diabetes and obesity worldwide. The annual wound care products market is projected to reach $15.3 billion by 2010. Chronic wounds are rarely seen in individuals who are otherwise healthy. In fact, chronic wound patients frequently suffer from "highly branded" diseases such as diabetes and obesity. This seems to have overshadowed the significance of wounds per se as a major health problem. For example, NIH's Research Portfolio Online Reporting Tool (RePORT; http://report.nih.gov/), directed at providing access to estimates of funding for various disease conditions does list several rare diseases but does not list wounds. Forty million inpatient surgical procedures were performed in the United States in 2000, followed closely by 31.5 million outpatient surgeries. The need for post-surgical wound care is sharply on the rise. Emergency wound care in an acute setting has major significance not only in a war setting but also in homeland preparedness against natural disasters as well as against terrorism attacks. An additional burden of wound healing is the problem of skin scarring, a $12 billion annual market. The immense economic and social impact of wounds in our society calls for allocation of a higher level of attention and resources to understand biological mechanisms underlying cutaneous wound complications.

2,353 citations

Journal ArticleDOI
TL;DR: It is suggested that type II diabetes may alter EPC biology in processes critical for new blood vessel growth and may identify a population at high risk for morbidity and mortality after vascular occlusive events.
Abstract: Background— The recent discovery of circulating endothelial progenitor cells (EPCs) has altered our understanding of new blood vessel growth such as occurs during collateral formation. Because diabetic complications occur in conditions in which EPC contributions have been demonstrated, EPC dysfunction may be important in their pathophysiology. Methods and Results— EPCs were isolated from human type II diabetics (n=20) and age-matched control subjects (n=20). Proliferation of diabetic EPCs relative to control subjects was decreased by 48% (P<0.01) and inversely correlated with patient levels of hemoglobin A1C (P<0.05). Diabetic EPCs had normal adhesion to fibronectin, collagen, and quiescent endothelial cells but a decreased adherence to human umbilical vein endothelial cells activated by tumor necrosis factor-α (TNF-α) (P<0.05). In a Matrigel assay, diabetic EPCs were 2.5 times less likely to participate in tubule formation compared with controls (P<0.05). Conclusions— These findings suggest that type II ...

1,475 citations

Journal ArticleDOI
TL;DR: It is shown that changes in the microenvironment including alterations in mechanical forces, oxygen levels, chemokines, extracellular matrix and growth factor synthesis directly impact cellular recruitment and activation, leading to impaired states of wound healing.
Abstract: Wound healing is one of the most complex processes in the human body. It involves the spatial and temporal synchronization of a variety of cell types with distinct roles in the phases of hemostasis...

1,018 citations


Cited by
More filters
Journal ArticleDOI
Ruslan Medzhitov1
23 Jul 2008-Nature
TL;DR: This work has shown that tissue stress or malfunction induces an adaptive response that is intermediate between the basal homeostatic state and a classic inflammatory response, which is referred to here as para-inflammation.
Abstract: Inflammation underlies a wide variety of physiological and pathological processes. Although the pathological aspects of many types of inflammation are well appreciated, their physiological functions are mostly unknown. The classic instigators of inflammation - infection and tissue injury - are at one end of a large range of adverse conditions that induce inflammation, and they trigger the recruitment of leukocytes and plasma proteins to the affected tissue site. Tissue stress or malfunction similarly induces an adaptive response, which is referred to here as para-inflammation. This response relies mainly on tissue-resident macrophages and is intermediate between the basal homeostatic state and a classic inflammatory response. Para-inflammation is probably responsible for the chronic inflammatory conditions that are associated with modern human diseases.

4,832 citations

Journal ArticleDOI
TL;DR: Athrosclerosis and cardiomyopathy in type 2 diabetes are caused in part by pathway-selective insulin resistance, which increases mitochondrial ROS production from free fatty acids and by inactivation of antiatherosclerosis enzymes by ROS.
Abstract: Oxidative stress plays a pivotal role in the development of diabetes complications, both microvascular and cardiovascular. The metabolic abnormalities of diabetes cause mitochondrial superoxide overproduction in endothelial cells of both large and small vessels, as well as in the myocardium. This increased superoxide production causes the activation of 5 major pathways involved in the pathogenesis of complications: polyol pathway flux, increased formation of AGEs (advanced glycation end products), increased expression of the receptor for AGEs and its activating ligands, activation of protein kinase C isoforms, and overactivity of the hexosamine pathway. It also directly inactivates 2 critical antiatherosclerotic enzymes, endothelial nitric oxide synthase and prostacyclin synthase. Through these pathways, increased intracellular reactive oxygen species (ROS) cause defective angiogenesis in response to ischemia, activate a number of proinflammatory pathways, and cause long-lasting epigenetic changes that drive persistent expression of proinflammatory genes after glycemia is normalized ("hyperglycemic memory"). Atherosclerosis and cardiomyopathy in type 2 diabetes are caused in part by pathway-selective insulin resistance, which increases mitochondrial ROS production from free fatty acids and by inactivation of antiatherosclerosis enzymes by ROS. Overexpression of superoxide dismutase in transgenic diabetic mice prevents diabetic retinopathy, nephropathy, and cardiomyopathy. The aim of this review is to highlight advances in understanding the role of metabolite-generated ROS in the development of diabetic complications.

3,822 citations

Journal ArticleDOI
TL;DR: The factors discussed include oxygenation, infection, age and sex hormones, stress, diabetes, obesity, medications, alcoholism, smoking, and nutrition, which may lead to therapeutics that improve wound healing and resolve impaired wounds.
Abstract: Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling For a wound to heal successfully, all four phases must occur in the proper sequence and time frame Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing This article reviews the recent literature on the most significant factors that affect cutaneous wound healing and the potential cellular and/or molecular mechanisms involved The factors discussed include oxygenation, infection, age and sex hormones, stress, diabetes, obesity, medications, alcoholism, smoking, and nutrition A better understanding of the influence of these factors on repair may lead to therapeutics that improve wound healing and resolve impaired wounds

3,678 citations

Journal Article
TL;DR: The surface mechanisms, which affords red blood cells long-circulatory lives and the ability of specific microorganisms to evade macrophage recognition, are explored and the rational approaches in the design as well as the biological performance of such constructs are assessed.
Abstract: The rapid recognition of intravenously injected colloidal carriers, such as liposomes and polymeric nanospheres from the blood by Kupffer cells, has initiated a surge of development for "Kupffer cell-evading" or long-circulating particles. Such carriers have applications in vascular drug delivery and release, site-specific targeting (passive as well as active targeting), as well as transfusion medicine. In this article we have critically reviewed and assessed the rational approaches in the design as well as the biological performance of such constructs. For engineering and design of long-circulating carriers, we have taken a lead from nature. Here, we have explored the surface mechanisms, which affords red blood cells long-circulatory lives and the ability of specific microorganisms to evade macrophage recognition. Our analysis is then centered where such strategies have been translated and fabricated to design a wide range of particulate carriers (e.g., nanospheres, liposomes, micelles, oil-in-water emulsions) with prolonged circulation and/or target specificity. With regard to the targeting issues, attention is particularly focused on the importance of physiological barriers and disease states.

3,413 citations

Journal ArticleDOI
06 May 2005-Cell
TL;DR: Using a coimplantation tumor xenograft model, it is demonstrated that carcinoma-associated fibroblasts extracted from human breast carcinomas promote the growth of admixed breast carcinoma cells significantly more than do normal mammaries derived from the same patients.

3,373 citations