scispace - formally typeset
Search or ask a question

Showing papers by "Geoffrey E. Hinton published in 2006"


Journal ArticleDOI
28 Jul 2006-Science
TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Abstract: High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such "autoencoder" networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.

16,717 citations


Journal ArticleDOI
TL;DR: A fast, greedy algorithm is derived that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory.
Abstract: We show how to use "complementary priors" to eliminate the explaining-away effects that make inference difficult in densely connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory. The fast, greedy algorithm is used to initialize a slower learning procedure that fine-tunes the weights using a contrastive version of the wake-sleep algorithm. After fine-tuning, a network with three hidden layers forms a very good generative model of the joint distribution of handwritten digit images and their labels. This generative model gives better digit classification than the best discriminative learning algorithms. The low-dimensional manifolds on which the digits lie are modeled by long ravines in the free-energy landscape of the top-level associative memory, and it is easy to explore these ravines by using the directed connections to display what the associative memory has in mind.

15,055 citations


01 Jan 2006
TL;DR: This work describes an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.
Abstract: High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such “autoencoder” networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.

2,842 citations


Proceedings Article
04 Dec 2006
TL;DR: A non-linear generative model for human motion data that uses an undirected model with binary latent variables and real-valued "visible" variables that represent joint angles that makes on-line inference efficient and allows for a simple approximate learning procedure.
Abstract: We propose a non-linear generative model for human motion data that uses an undirected model with binary latent variables and real-valued "visible" variables that represent joint angles. The latent and visible variables at each time step receive directed connections from the visible variables at the last few time-steps. Such an architecture makes on-line inference efficient and allows us to use a simple approximate learning procedure. After training, the model finds a single set of parameters that simultaneously capture several different kinds of motion. We demonstrate the power of our approach by synthesizing various motion sequences and by performing on-line filling in of data lost during motion capture.

728 citations


Journal ArticleDOI
TL;DR: A way of modeling high-dimensional data vectors by using an unsupervised, nonlinear, multilayer neural network in which the activity of each neuron-like unit makes an additive contribution to a global energy score that indicates how surprised the network is by the data vector.

141 citations


Journal ArticleDOI
TL;DR: An energy-based model is presented that uses a product of generalized Student-t distributions to capture the statistical structure in data sets to study the topographic organization of Gabor-like receptive fields that the model learns.
Abstract: We present an energy-based model that uses a product of generalized Student-t distributions to capture the statistical structure in data sets. This model is inspired by and particularly applicable to "natural" data sets such as images. We begin by providing the mathematical framework, where we discuss complete and overcomplete models and provide algorithms for training these models from data. Using patches of natural scenes, we demonstrate that our approach represents a viable alternative to independent component analysis as an interpretive model of biological visual systems. Although the two approaches are similar in flavor, there are also important differences, particularly when the representations are overcomplete. By constraining the interactions within our model, we are also able to study the topographic organization of Gabor-like receptive fields that our model learns. Finally, we discuss the relation of our new approach to previous work—in particular, gaussian scale mixture models and variants of independent components analysis.

124 citations