scispace - formally typeset
Search or ask a question
Author

Geoffrey E. Hinton

Bio: Geoffrey E. Hinton is an academic researcher from Google. The author has contributed to research in topics: Artificial neural network & Generative model. The author has an hindex of 157, co-authored 414 publications receiving 409047 citations. Previous affiliations of Geoffrey E. Hinton include Canadian Institute for Advanced Research & Max Planck Society.


Papers
More filters
Proceedings Article
15 Feb 2017
TL;DR: It is found that both label smoothing and the confidence penalty improve state-of-the-art models across benchmarks without modifying existing hyperparameters, suggesting the wide applicability of these regularizers.
Abstract: We systematically explore regularizing neural networks by penalizing low entropy output distributions. We show that penalizing low entropy output distributions, which has been shown to improve exploration in reinforcement learning, acts as a strong regularizer in supervised learning. Furthermore, we connect a maximum entropy based confidence penalty to label smoothing through the direction of the KL divergence. We exhaustively evaluate the proposed confidence penalty and label smoothing on 6 common benchmarks: image classification (MNIST and Cifar-10), language modeling (Penn Treebank), machine translation (WMT'14 English-to-German), and speech recognition (TIMIT and WSJ). We find that both label smoothing and the confidence penalty improve state-of-the-art models across benchmarks without modifying existing hyperparameters, suggesting the wide applicability of these regularizers.

617 citations

16 Sep 1996
TL;DR: The Expectation Maximization (EM) algorithm for estimating the parameters of linear systems (LDS) is introduced and its relation to factor analysis and other data modeling techniques is pointed out.
Abstract: Linear systems have been used extensively in engineering to model and control the behavior of dynamical systems. In this note, we present the Expectation Maximization (EM) algorithm for estimating the parameters of linear systems (Shumway and Sto er, 1982). We also point out the relationship between linear dynamical systems, factor analysis, and hidden Markov models. Introduction The goal of this note is to introduce the EM algorithm for estimating the parameters of linear dynamical systems (LDS). Such linear systems can be used both for supervised and unsupervised modeling of time series. We rst describe the model and then brie y point out its relation to factor analysis and other data modeling techniques. The Model Linear time-invariant dynamical systems, also known as linear Gaussian state-space models, can be described by the following two equations: xt+1 = Axt +wt (1) yt = Cxt+ vt: (2) Time is indexed by the discrete index t. The output yt is a linear function of the state, xt, and the state at one time step depends linearly on the previous state. Both state and output noise, wt and vt, are zero-mean normally distributed random variables with covariance matrices Q and R, respectively. Only the output of the system is observed, the state and all the noise variables are hidden. Rather than regarding the state as a deterministic value corrupted by random noise, we combine the state variable and the state noise variable into a single Gaussian random

593 citations

Proceedings Article
24 May 2019
TL;DR: In this article, the authors introduce a similarity index that measures the relationship between representational similarity matrices and does not suffer from this limitation, which is equivalent to centered kernel alignment (CKA) and is also closely connected to CCA.
Abstract: Recent work has sought to understand the behavior of neural networks by comparing representations between layers and between different trained models. We examine methods for comparing neural network representations based on canonical correlation analysis (CCA). We show that CCA belongs to a family of statistics for measuring multivariate similarity, but that neither CCA nor any other statistic that is invariant to invertible linear transformation can measure meaningful similarities between representations of higher dimension than the number of data points. We introduce a similarity index that measures the relationship between representational similarity matrices and does not suffer from this limitation. This similarity index is equivalent to centered kernel alignment (CKA) and is also closely connected to CCA. Unlike CCA, CKA can reliably identify correspondences between representations in networks trained from different initializations.

584 citations

Book ChapterDOI
05 Sep 2010
TL;DR: This work proposes detecting roads using a neural network with millions of trainable weights which looks at a much larger context than was used in previous attempts at learning the task, and shows that the method works reliably on two challenging urban datasets that are an order of magnitude larger than what was used to evaluate previous approaches.
Abstract: Reliably extracting information from aerial imagery is a difficult problem with many practical applications. One specific case of this problem is the task of automatically detecting roads. This task is a difficult vision problem because of occlusions, shadows, and a wide variety of non-road objects. Despite 30 years of work on automatic road detection, no automatic or semi-automatic road detection system is currently on the market and no published method has been shown to work reliably on large datasets of urban imagery. We propose detecting roads using a neural network with millions of trainable weights which looks at a much larger context than was used in previous attempts at learning the task. The network is trained on massive amounts of data using a consumer GPU. We demonstrate that predictive performance can be substantially improved by initializing the feature detectors using recently developed unsupervised learning methods as well as by taking advantage of the local spatial coherence of the output labels.We show that our method works reliably on two challenging urban datasets that are an order of magnitude larger than what was used to evaluate previous approaches.

583 citations

Book
03 Jan 1986
TL;DR: In this paper, the authors discuss the origins of parallel distributed processing, examples of PDP models, Representation and Learning in PDP Models, origins of Parallel Distributed Processing, Acknowledgments
Abstract: This chapter contains sections titled: Parallel Distributed Processing, Examples Of PDP Models, Representation and Learning in PDP Models, Origins of Parallel Distributed Processing, Acknowledgments

549 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Journal ArticleDOI
TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Abstract: Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O. 1. Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.

72,897 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations