scispace - formally typeset
Search or ask a question
Author

Geoffrey E. Hinton

Bio: Geoffrey E. Hinton is an academic researcher from Google. The author has contributed to research in topics: Artificial neural network & Generative model. The author has an hindex of 157, co-authored 414 publications receiving 409047 citations. Previous affiliations of Geoffrey E. Hinton include Canadian Institute for Advanced Research & Max Planck Society.


Papers
More filters
01 Jan 1983
TL;DR: A particular nondeterministic operator is given, based on statistical mechanics, for updating the truth values of hypothcses, and a learning rule is described which allows a parallel system to converge on a set ofweights that optimizes its perccptt~al inferences.
Abstract: When a vision system creates an interpretation of some input datn, it assigns truth values or probabilities to intcrnal hypothcses about the world. We present a non-dctcrministic method for assigning truth values that avoids many of the problcms encountered by existing relaxation methods. Instead of rcprcscnting probabilitics with realnumbers, we usc a more dircct encoding in which thc probability \ associated with a hypotlmis is rcprcscntcd by the probability hat it is in one of two states, true or false. Wc give a particular nondeterministic operator, based on statistical mechanics, for updating the truth values of hypothcses. The operator ensures that the probability of discovering a particular combination of hypothcscs is a simplc function of how good that combination is. Wc show that thcrc is a simple relationship bctween this operator and Bayesian inference, and we describe a learning rule which allows a parallel system to converge on a set ofweights that optimizes its perccptt~al inferences.

542 citations

Proceedings Article
07 Dec 2009
TL;DR: This work introduces a two-layer undirected graphical model, called a "Replicated Softmax", that can be used to model and automatically extract low-dimensional latent semantic representations from a large unstructured collection of documents.
Abstract: We introduce a two-layer undirected graphical model, called a "Replicated Softmax", that can be used to model and automatically extract low-dimensional latent semantic representations from a large unstructured collection of documents. We present efficient learning and inference algorithms for this model, and show how a Monte-Carlo based method, Annealed Importance Sampling, can be used to produce an accurate estimate of the log-probability the model assigns to test data. This allows us to demonstrate that the proposed model is able to generalize much better compared to Latent Dirichlet Allocation in terms of both the log-probability of held-out documents and the retrieval accuracy.

541 citations

Proceedings ArticleDOI
26 May 2013
TL;DR: This work shows that it can improve generalization and make training of deep networks faster and simpler by substituting the logistic units with rectified linear units.
Abstract: Deep neural networks have recently become the gold standard for acoustic modeling in speech recognition systems The key computational unit of a deep network is a linear projection followed by a point-wise non-linearity, which is typically a logistic function In this work, we show that we can improve generalization and make training of deep networks faster and simpler by substituting the logistic units with rectified linear units These units are linear when their input is positive and zero otherwise In a supervised setting, we can successfully train very deep nets from random initialization on a large vocabulary speech recognition task achieving lower word error rates than using a logistic network with the same topology Similarly in an unsupervised setting, we show how we can learn sparse features that can be useful for discriminative tasks All our experiments are executed in a distributed environment using several hundred machines and several hundred hours of speech data

541 citations

Proceedings Article
11 Mar 2007
TL;DR: This work shows how to pretrain and fine-tune a multilayer neural network to learn a nonlinear transformation from the input space to a lowdimensional feature space in which K-nearest neighbour classification performs well.
Abstract: We show how to pretrain and fine-tune a multilayer neural network to learn a nonlinear transformation from the input space to a lowdimensional feature space in which K-nearest neighbour classification performs well. We also show how the non-linear transformation can be improved using unlabeled data. Our method achieves a much lower error rate than Support Vector Machines or standard backpropagation on a widely used version of the MNIST handwritten digit recognition task. If some of the dimensions of the low-dimensional feature space are not used for nearest neighbor classification, our method uses these dimensions to explicitly represent transformations of the digits that do not affect their identity.

531 citations

Proceedings Article
01 Dec 2004
TL;DR: An alternative two-layer model based on exponential family distributions and the semantics of undirected models is proposed, which performs well on document retrieval tasks and provides an elegant solution to searching with keywords.
Abstract: Directed graphical models with one layer of observed random variables and one or more layers of hidden random variables have been the dominant modelling paradigm in many research fields. Although this approach has met with considerable success, the causal semantics of these models can make it difficult to infer the posterior distribution over the hidden variables. In this paper we propose an alternative two-layer model based on exponential family distributions and the semantics of undirected models. Inference in these "exponential family harmoniums" is fast while learning is performed by minimizing contrastive divergence. A member of this family is then studied as an alternative probabilistic model for latent semantic indexing. In experiments it is shown that they perform well on document retrieval tasks and provide an elegant solution to searching with keywords.

520 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Journal ArticleDOI
TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Abstract: Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O. 1. Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.

72,897 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations