scispace - formally typeset
Search or ask a question
Author

Geoffrey E. Hinton

Bio: Geoffrey E. Hinton is an academic researcher from Google. The author has contributed to research in topics: Artificial neural network & Generative model. The author has an hindex of 157, co-authored 414 publications receiving 409047 citations. Previous affiliations of Geoffrey E. Hinton include Canadian Institute for Advanced Research & Max Planck Society.


Papers
More filters
Journal ArticleDOI
01 Dec 1998
TL;DR: A split-and-merge expectation-maximization algorithm to overcome the local maxima problem in parameter estimation of finite mixture models and is applied to the training of gaussian mixtures and mixtures of factor analyzers and shows the practical usefulness by applying it to image compression and pattern recognition problems.
Abstract: We present a split-and-merge expectation-maximization (SMEM) algorithm to overcome the local maxima problem in parameter estimation of finite mixture models. In the case of mixture models, local maxima often involve having too many components of a mixture model in one part of the space and too few in another, widely separated part of the space. To escape from such configurations, we repeatedly perform simultaneous split-and-merge operations using a new criterion for efficiently selecting the split-and-merge candidates. We apply the proposed algorithm to the training of gaussian mixtures and mixtures of factor analyzers using synthetic and real data and show the effectiveness of using the split- and-merge operations to improve the likelihood of both the training data and of held-out test data. We also show the practical usefulness of the proposed algorithm by applying it to image compression and pattern recognition problems.

422 citations

Proceedings Article
26 Jun 2012
TL;DR: This work proposes two robust loss functions for dealing with incomplete and poorly registered label noise and uses the loss functions to train a deep neural network on two challenging aerial image datasets.
Abstract: When training a system to label images, the amount of labeled training data tends to be a limiting factor. We consider the task of learning to label aerial images from existing maps. These provide abundant labels, but the labels are often incomplete and sometimes poorly registered. We propose two robust loss functions for dealing with these kinds of label noise and use the loss functions to train a deep neural network on two challenging aerial image datasets. The robust loss functions lead to big improvements in performance and our best system substantially outperforms the best published results on the task we consider.

416 citations

Proceedings ArticleDOI
14 Jun 2009
TL;DR: A new model is presented, based on the CRBM, that preserves its most important computational properties and includes multiplicative three-way interactions that allow the effective interaction weight between two units to be modulated by the dynamic state of a third unit.
Abstract: The Conditional Restricted Boltzmann Machine (CRBM) is a recently proposed model for time series that has a rich, distributed hidden state and permits simple, exact inference. We present a new model, based on the CRBM that preserves its most important computational properties and includes multiplicative three-way interactions that allow the effective interaction weight between two units to be modulated by the dynamic state of a third unit. We factor the three-way weight tensor implied by the multiplicative model, reducing the number of parameters from O(N3) to O(N2). The result is an efficient, compact model whose effectiveness we demonstrate by modeling human motion. Like the CRBM, our model can capture diverse styles of motion with a single set of parameters, and the three-way interactions greatly improve the model's ability to blend motion styles or to transition smoothly among them.

413 citations

Proceedings Article
01 Jan 2011
TL;DR: This work shows how to learn many layers of features on color images and how these features are used to initialize deep autoencoders, which are then used to map images to short binary codes.
Abstract: We show how to learn many layers of features on color images and we use these features to initialize deep autoencoders. We then use the autoencoders to map images to short binary codes. Using semantic hashing [6], 28-bit codes can be used to retrieve images that are similar to a query image in a time that is independent of the size of the database. This extremely fast retrieval makes it possible to search using multiple di erent transformations of the query image. 256-bit binary codes allow much more accurate matching and can be used to prune the set of images found using the 28-bit codes.

406 citations

Book
01 Apr 1996
TL;DR: The assumption that acquired character istics are not in- herited is ofte n taken to imply that adaptations t he adaptations an organism learns dur ing its lifeti me cannot guide the course of evolut ion.
Abstract: The assumption that acquired character istics are not in­ herited is ofte n taken to imply t hat t he adaptations t hat an organism learns dur ing its lifeti me cannot guide t he course of evolut ion . This infere nce is incor rec t (2). Learni ng alt ers the shape of t he search space in which evolu tio n operates and thereby pro vides good evolut ion ar y paths towa rds sets of co-adapted alleles. We demonst r at e t hat th is effect allows learning organisms to evolve much faster than their 000 ­ learning equivalents, even though the characteris tics acquired by t he phenotype are not communicated to the genotype.

403 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Journal ArticleDOI
TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Abstract: Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O. 1. Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.

72,897 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations