scispace - formally typeset
Search or ask a question
Author

Geoffrey Rose

Bio: Geoffrey Rose is an academic researcher from University of London. The author has contributed to research in topics: Population & Whitehall Study. The author has an hindex of 50, co-authored 112 publications receiving 23565 citations. Previous affiliations of Geoffrey Rose include Imperial College London & Guy's Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: Aetiology confronts two distinct issues: the determinant of individual cases, and the determinants of incidence rate: if exposure to a necessary agent is homogeneous within a population, then case/control and cohort methods will fail to detect it.
Abstract: Aetiology confronts two distinct issues: the determinants of individual cases, and the determinants of incidence rate. If exposure to a necessary agent is homogeneous within a population, then case/control and cohort methods will fail to detect it: they will only identify markers of susceptibility. The corresponding strategies in control are the 'high-risk' approach, which seeks to protect susceptible individuals, and the population approach, which seeks to control the causes of incidence. The two approaches are not usually in competition, but the prior concern should always be to discover and control the causes of incidence.

3,377 citations

Journal Article
TL;DR: Cardiovascular survey methods, Card cardiovascular survey methods , مرکز فناوری اطلاعات و اصاع رسانی, کδاوρزی
Abstract: Cardiovascular survey methods , Cardiovascular survey methods , مرکز فناوری اطلاعات و اطلاع رسانی کشاورزی

2,637 citations

Book
01 Jan 1992
TL;DR: This chapter discusses the relation of risk to exposure, prevention for individuals and the 'high-risk' strategy, and the population strategy of prevention.
Abstract: Part 1 The Objectives of Preventive Medicine: The scope for prevention. Why seek to prevent?: the economic and humanitarian arguments. Priorities: a matter of choice Part 2 What needs to be prevented?: Sick individuals: a continuum of disease severity case definitions. A continuum of risk: the prevention paradox mass and individual measures. A unified approach Part 3 The Relation of Risk to Exposure: The dose-effect relationship. The limitations of research methods. Small but widespread risks: a public health disaster? Part 4 Prevention for Individuals and the "High-risk" Strategy Prevention and clinical care The high-risk strategy. Identifying risk-screening. Strengths and weaknesses of the high-risk strategy Part 5 Individuals and Populations: Individual variation: genetic, social and behavioural determinants of diversity. Variation between populations. Sick and healthy populations Part 6 Some Implications of Population change: Effects of the population average on the occurrence of deviance examples from mental health. Health implications for the population as a whole: cardiovascular disease body weight birth weight early development and adult health Down's Syndrome alcohol osteoporosis and fractures occupational and environmental health other fields of application. Safety Part 7 The Population Strategy of Prevention: Principles: the sociological, moral and medical arguments scope proximal and underlying causes. Strengths. Limitations and problems 8. In Search of Health: How do populations change?: the alcohol example. Scientific justification for change. Social engineering versus individual freedom. Freedom of choice. Role of governments. Who takes the decisions? The largest threat to public health: war. Social and economic deprivation. Responsibility for health.

1,886 citations

Journal ArticleDOI
TL;DR: In the Whitehall study, 17 530 civil servants were classified according to employment grade, and their mortality was recorded over 10 years, showing a steep inverse relation between grade and mortality.

1,437 citations

Journal Article
TL;DR: In this paper, the authors present a survey method for cardiovascular survey methods, which is based on the survey methods of Cardiovascular Survey Methods (CSM) survey method and the survey method of the Cardiovascular survey methods.
Abstract: Cardiovascular survey methods , Cardiovascular survey methods , مرکز فناوری اطلاعات و اطلاع رسانی کشاورزی

1,370 citations


Cited by
More filters
Book
D.L. Donoho1
01 Jan 2004
TL;DR: It is possible to design n=O(Nlog(m)) nonadaptive measurements allowing reconstruction with accuracy comparable to that attainable with direct knowledge of the N most important coefficients, and a good approximation to those N important coefficients is extracted from the n measurements by solving a linear program-Basis Pursuit in signal processing.
Abstract: Suppose x is an unknown vector in Ropfm (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible by transform coding with a known transform, and we reconstruct via the nonlinear procedure defined here, the number of measurements n can be dramatically smaller than the size m. Thus, certain natural classes of images with m pixels need only n=O(m1/4log5/2(m)) nonadaptive nonpixel samples for faithful recovery, as opposed to the usual m pixel samples. More specifically, suppose x has a sparse representation in some orthonormal basis (e.g., wavelet, Fourier) or tight frame (e.g., curvelet, Gabor)-so the coefficients belong to an lscrp ball for 0

18,609 citations

Journal Article
TL;DR: In this article, the effects of intensive blood-glucose control with either sulphonylurea or insulin and conventional treatment on the risk of microvascular and macrovascular complications in patients with type 2 diabetes in a randomised controlled trial were compared.

17,108 citations

Journal ArticleDOI
TL;DR: A WHO Consultation has taken place in parallel with a report by an American Diabetes Association Expert Committee to re‐examine diagnostic criteria and classification of diabetes mellitus and is hoped that the new classification will allow better classification of individuals and lead to fewer therapeutic misjudgements.
Abstract: The classification of diabetes mellitus and the tests used for its diagnosis were brought into order by the National Diabetes Data Group of the USA and the second World Health Organization Expert Committee on Diabetes Mellitus in 1979 and 1980. Apart from minor modifications by WHO in 1985, little has been changed since that time. There is however considerable new knowledge regarding the aetiology of different forms of diabetes as well as more information on the predictive value of different blood glucose values for the complications of diabetes. A WHO Consultation has therefore taken place in parallel with a report by an American Diabetes Association Expert Committee to re-examine diagnostic criteria and classification. The present document includes the conclusions of the former and is intended for wide distribution and discussion before final proposals are submitted to WHO for approval. The main changes proposed are as follows. The diagnostic fasting plasma (blood) glucose value has been lowered to > or =7.0 mmol l(-1) (6.1 mmol l(-1)). Impaired Glucose Tolerance (IGT) is changed to allow for the new fasting level. A new category of Impaired Fasting Glycaemia (IFG) is proposed to encompass values which are above normal but below the diagnostic cut-off for diabetes (plasma > or =6.1 to or =5.6 to <6.1 mmol l(-1)). Gestational Diabetes Mellitus (GDM) now includes gestational impaired glucose tolerance as well as the previous GDM. The classification defines both process and stage of the disease. The processes include Type 1, autoimmune and non-autoimmune, with beta-cell destruction; Type 2 with varying degrees of insulin resistance and insulin hyposecretion; Gestational Diabetes Mellitus; and Other Types where the cause is known (e.g. MODY, endocrinopathies). It is anticipated that this group will expand as causes of Type 2 become known. Stages range from normoglycaemia to insulin required for survival. It is hoped that the new classification will allow better classification of individuals and lead to fewer therapeutic misjudgements.

15,167 citations

Journal ArticleDOI
01 Dec 1988-Diabetes
TL;DR: The possibility is raised that resistance to insulin-stimulated glucose uptake and hyperinsulinemia are involved in the etiology and clinical course of three major related diseases— NIDDM, hypertension, and CAD.
Abstract: Resistance to insulin-stimulated glucose uptake is present in the majority of patients with impaired glucose tolerance (IGT) or non-insulin-dependent diabetes mellitus (NIDDM) and in ∼25% of nonobese individuals with normal oral glucose tolerance. In these conditions, deterioration of glucose tolerance can only be prevented if the β-cell is able to increase its insulin secretory response and maintain a state of chronic hyperinsulinemia. When this goal cannot be achieved, gross decompensation of glucose homeostasis occurs. The relationship between insulin resistance, plasma insulin level, and glucose intolerance is mediated to a significant degree by changes in ambient plasma free-fatty acid (FFA) concentration. Patients with NIDDM are also resistant to insulin suppression of plasma FFA concentration, but plasma FFA concentrations can be reduced by relatively small increments in insulin concentration.Consequently, elevations of circulating plasma FFA concentration can be prevented if large amounts of insulin can be secreted. If hyperinsulinemia cannot be maintained, plasma FFA concentration will not be suppressed normally, and the resulting increase in plasma FFA concentration will lead to increased hepatic glucose production. Because these events take place in individuals who are quite resistant to insulinstimulated glucose uptake, it is apparent that even small increases in hepatic glucose production are likely to lead to significant fasting hyperglycemia under these conditions. Although hyperinsulinemia may prevent frank decompensation of glucose homeostasis in insulin-resistant individuals, this compensatory response of the endocrine pancreas is not without its price. Patients with hypertension, treated or untreated, are insulin resistant, hyperglycemic, and hyperinsulinemic. In addition, a direct relationship between plasma insulin concentration and blood pressure has been noted. Hypertension can also be produced in normal rats when they are fed a fructose-enriched diet, an intervention that also leads to the development of insulin resistance and hyperinsulinemia. The development of hypertension in normal rats by an experimental manipulation known to induce insulin resistance and hyperinsulinemia provides further support for the view that the relationship between the three variables may be a causal one. However, even if insulin resistance and hyperinsulinemia are not involved in the etiology of hypertension, it is likely that the increased risk of coronary artery disease (CAD) in patients with hypertension and the fact that this risk if not reduced with antihypertensive treatment are due to the clustering of risk factors for CAD, in addition to high blood pressure, associated with insulin resistance. These include hyperinsulinemia, IGT, increased plasma triglyceride concentration, and decreased high-density lipoprotein cholesterol concentration, all of which are associated with increased risk for CAD. It is likely that the same risk factors play a significant role in the genesis of CAD in the population as a whole. Based on these considerations the possibility is raised that resistance to insulin-stimulated glucose uptake and hyperinsulinemia are involved in the etiology and clinical course of three major related diseases— NIDDM, hypertension, and CAD.

12,460 citations

Journal ArticleDOI
TL;DR: It was deemed essential to develop an appropriate, uniform terminology and a functional, working classification of diabetes that reflects the current knowledge about the disease.
Abstract: the growth of knowledge regarding the etiology and pathogenesis of diabetes has led many individuals and groups in the diabetes community to express the need for a revision of the nomenclature, diagnostic criteria, and classification of diabetes. As a consequence, it was deemed essential to develop an appropriate, uniform terminology and a functional, working classification of diabetes that reflects the current knowledge about the disease. (1)

11,886 citations