scispace - formally typeset
Search or ask a question
Author

Georg Casari

Bio: Georg Casari is an academic researcher from European Bioinformatics Institute. The author has contributed to research in topics: Genome & Nuclear receptor. The author has an hindex of 24, co-authored 31 publications receiving 5682 citations.

Papers
More filters
Journal ArticleDOI
30 Mar 2006-Nature
TL;DR: This study reports the first genome-wide screen for complexes in an organism, budding yeast, using affinity purification and mass spectrometry and provides the largest collection of physically determined eukaryotic cellular machines so far and a platform for biological data integration and modelling.
Abstract: Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. Here we report the first genome-wide screen for complexes in an organism, budding yeast, using affinity purification and mass spectrometry. Through systematic tagging of open reading frames (ORFs), the majority of complexes were purified several times, suggesting screen saturation. The richness of the data set enabled a de novo characterization of the composition and organization of the cellular machinery. The ensemble of cellular proteins partitions into 491 complexes, of which 257 are novel, that differentially combine with additional attachment proteins or protein modules to enable a diversification of potential functions. Support for this modular organization of the proteome comes from integration with available data on expression, localization, function, evolutionary conservation, protein structure and binary interactions. This study provides the largest collection of physically determined eukaryotic cellular machines so far and a platform for biological data integration and modelling.

2,640 citations

Journal ArticleDOI
TL;DR: The mapping of a protein interaction network around 32 known and candidate TNF-α/NF-κB pathway components is reported by using an integrated approach comprising tandem affinity purification, liquid-chromatography tandem mass spectrometry, network analysis and directed functional perturbation studies using RNA interference.
Abstract: Signal transduction pathways are modular composites of functionally interdependent sets of proteins that act in a coordinated fashion to transform environmental information into a phenotypic response. The pro-inflammatory cytokine tumour necrosis factor (TNF)-α triggers a signalling cascade, converging on the activation of the transcription factor NF-κB, which forms the basis for numerous physiological and pathological processes. Here we report the mapping of a protein interaction network around 32 known and candidate TNF-α/NF-κB pathway components by using an integrated approach comprising tandem affinity purification, liquid-chromatography tandem mass spectrometry, network analysis and directed functional perturbation studies using RNA interference. We identified 221 molecular associations and 80 previously unknown interactors, including 10 new functional modulators of the pathway. This systems approach provides significant insight into the logic of the TNF-α/NF-κB pathway and is generally applicable to other pathways relevant to human disease.

956 citations

Journal ArticleDOI
TL;DR: A novel method is presented that exploits conservation patterns for the prediction of functional residues in SH2 domains and in the conserved box of cyclins, using a simple but powerful representation of entire proteins, as well as sequence residues as vectors in a generalised ‘sequence space’.
Abstract: The biological activity of a protein typically depends on the presence of a small number of functional residues. Identifying these residues from the amino acid sequences alone would be useful. Classically, strictly conserved residues are predicted to be functional but often conservation patterns are more complicated. Here, we present a novel method that exploits such patterns for the prediction of functional residues. The method uses a simple but powerful representation of entire proteins, as well as sequence residues as vectors in a generalised 'sequence space'. Projection of these vectors onto a lower-dimensional space reveals groups of residues specific for particular subfamilies that are predicted to be directly involved in protein function. Based on the method we present testable predictions for sets of functional residues in SH2 domains and in the conserved box of cyclins.

428 citations

Journal ArticleDOI
TL;DR: Evaluated by site‐directed mutagenesis the contributions of individual amino acid residues/positions for IgE binding to Bet v 1, the major allergen of birch pollen, and found that IgEbinding toBet v 1 depended on at least six amino acid sequences, but conserved T cell activating capacity is necessary for immunomodulation.
Abstract: Specific immunotherapy is an efficient treatment for patients suffering from type I allergy. The mechanisms underlying successful immunotherapy are assumed to operate at the level of T helper cells, leading to a modulation of the immune response to allergens. During immunotherapy, increasing doses of allergens are given on a regular basis, and the beneficial effects for the patient depend on the concentration of allergen used. On the other hand, the risk of IgE-mediated anaphylactic side effects also increase with the amount of allergen applied per injection. Therefore, we have proposed the use of hypoallergenic (low IgE binding activity) forms of allergens for immunotherapy. We evaluated by site-directed mutagenesis the contributions of individual amino acid residues/positions for IgE binding to Bet v 1, the major allergen of birch pollen. We found that IgE binding to Bet v 1 depended on at least six amino acid residues/positions. Immunoblot analyses and inhibition experiments showed that the multiple-po...

296 citations

Journal ArticleDOI
TL;DR: This new approach combines the high-level description of molecular function with pair statistics that express genome organization, expected to complement traditional methods of sequence analysis in the study of genomic structure, function, and evolution.
Abstract: An approach for genome comparison, combining function classification of gene products and sequence comparison, is presented. The genomes of Haemophilus influenzae and Escherichia coli are analyzed, and all genes are classified into nine major functional classes, corresponding to important cellular processes. To study gene order relationships and genome organization in the two bacteria, we performed statistics on neighboring pairs of genes. To estimate the significance of the observations, a statistical model based on binomial distributions has been developed. Significant patterns of gene order are observed within, as well as between, the two bacterial genomes: Functionally related genes tend to be neighbors more often than do unrelated genes. Some of these groups represent well-known operons, but additional gene clusters are identified. These clusters correspond to genomic elements that have been conserved during bacterial evolution. In addition to nearest-neighbor relationships, the method is also useful to study the relative direction of transcription in genomes, which is also highly conserved between homologous gene pairs. This new approach combines the high-level description of molecular function with pair statistics that express genome organization. It is expected to complement traditional methods of sequence analysis in the study of genomic structure, function, and evolution.

198 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of established NF-kappaB signaling pathways is provided with focus on the current state of research into the mechanisms that regulate IKK activation and NF- kappaB transcriptional activity.
Abstract: The transcription factor NF-kappaB has been the focus of intense investigation for nearly two decades. Over this period, considerable progress has been made in determining the function and regulation of NF-kappaB, although there are nuances in this important signaling pathway that still remain to be understood. The challenge now is to reconcile the regulatory complexity in this pathway with the complexity of responses in which NF-kappaB family members play important roles. In this review, we provide an overview of established NF-kappaB signaling pathways with focus on the current state of research into the mechanisms that regulate IKK activation and NF-kappaB transcriptional activity.

3,829 citations

Journal ArticleDOI
TL;DR: This work presents a novel approach called TRIBE-MCL for rapid and accurate clustering of protein sequences into families based on precomputed sequence similarity information that has been rigorously tested and validated on a number of very large databases.
Abstract: Detection of protein families in large databases is one of the principal research objectives in structural and functional genomics. Protein family classification can significantly contribute to the delineation of functional diversity of homologous proteins, the prediction of function based on domain architecture or the presence of sequence motifs as well as comparative genomics, providing valuable evolutionary insights. We present a novel approach called TRIBE-MCL for rapid and accurate clustering of protein sequences into families. The method relies on the Markov cluster (MCL) algorithm for the assignment of proteins into families based on precomputed sequence similarity information. This novel approach does not suffer from the problems that normally hinder other protein sequence clustering algorithms, such as the presence of multi-domain proteins, promiscuous domains and fragmented proteins. The method has been rigorously tested and validated on a number of very large databases, including SwissProt, InterPro, SCOP and the draft human genome. Our results indicate that the method is ideally suited to the rapid and accurate detection of protein families on a large scale. The method has been used to detect and categorise protein families within the draft human genome and the resulting families have been used to annotate a large proportion of human proteins.

3,468 citations

Journal ArticleDOI
TL;DR: This systematic review and meta-analyses confirmed the findings of a previous study published in “Rhinitis and Asthma: Causes and Prevention, 2nd Ed.” (2015) as well as new findings of “Mechanisms of Respiratory Disease and Allergology,” which confirmed the role of EMTs in the development of these diseases.
Abstract: Authors Jan L. Brozek, MD, PhD – Department of Clinical Epidemiology & Biostatistics and Medicine, McMaster University, Hamilton, Canada Jean Bousquet, MD, PhD – Service des Maladies Respiratoires, Hopital Arnaud de Villeneuve, Montpellier, France, INSERM, CESP U1018, Respiratory and Environmental Epidemiology Team, France, and WHO Collaborating Center for Rhinitis and Asthma Carlos E. Baena-Cagnani, MD – Faculty of Medicine, Catholic University of Cordoba, Cordoba, Argentina Sergio Bonini, MD – Institute of Neurobiology and Molecular Medicine – CNR, Rome, Italy and Department of Medicine, Second University of Naples, Naples, Italy G. Walter Canonica, MD – Allergy & Respiratory Diseases, DIMI, Department of Internal Medicine, University of Genoa, Genoa, Italy Thomas B. Casale, MD – Division of Allergy and Immunology, Department of Medicine, Creighton University, Omaha, Nebraska, USA Roy Gerth van Wijk, MD, PhD – Section of Allergology, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands Ken Ohta, MD, PhD – Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan Torsten Zuberbier, MD – Department of Dermatology and Allergy, Charite Universitatsmedizin Berlin, Berlin, Germany Holger J. Schunemann, MD, PhD, MSc – Department of Clinical Epidemiology & Biostatistics and Medicine, McMaster University, Hamilton, Canada

3,368 citations

Journal ArticleDOI
30 Mar 2006-Nature
TL;DR: This study reports the first genome-wide screen for complexes in an organism, budding yeast, using affinity purification and mass spectrometry and provides the largest collection of physically determined eukaryotic cellular machines so far and a platform for biological data integration and modelling.
Abstract: Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. Here we report the first genome-wide screen for complexes in an organism, budding yeast, using affinity purification and mass spectrometry. Through systematic tagging of open reading frames (ORFs), the majority of complexes were purified several times, suggesting screen saturation. The richness of the data set enabled a de novo characterization of the composition and organization of the cellular machinery. The ensemble of cellular proteins partitions into 491 complexes, of which 257 are novel, that differentially combine with additional attachment proteins or protein modules to enable a diversification of potential functions. Support for this modular organization of the proteome comes from integration with available data on expression, localization, function, evolutionary conservation, protein structure and binary interactions. This study provides the largest collection of physically determined eukaryotic cellular machines so far and a platform for biological data integration and modelling.

2,640 citations