scispace - formally typeset
Search or ask a question
Author

Georg Langs

Bio: Georg Langs is an academic researcher from Medical University of Vienna. The author has contributed to research in topics: Image segmentation & Population. The author has an hindex of 42, co-authored 281 publications receiving 8169 citations. Previous affiliations of Georg Langs include University of Vienna & École Centrale Paris.


Papers
More filters
Book ChapterDOI
25 Jun 2017
TL;DR: AnoGAN, a deep convolutional generative adversarial network is proposed to learn a manifold of normal anatomical variability, accompanying a novel anomaly scoring scheme based on the mapping from image space to a latent space.
Abstract: Obtaining models that capture imaging markers relevant for disease progression and treatment monitoring is challenging. Models are typically based on large amounts of data with annotated examples of known markers aiming at automating detection. High annotation effort and the limitation to a vocabulary of known markers limit the power of such approaches. Here, we perform unsupervised learning to identify anomalies in imaging data as candidates for markers. We propose AnoGAN, a deep convolutional generative adversarial network to learn a manifold of normal anatomical variability, accompanying a novel anomaly scoring scheme based on the mapping from image space to a latent space. Applied to new data, the model labels anomalies, and scores image patches indicating their fit into the learned distribution. Results on optical coherence tomography images of the retina demonstrate that the approach correctly identifies anomalous images, such as images containing retinal fluid or hyperreflective foci.

1,800 citations

Journal ArticleDOI
TL;DR: An overarching organization of large-scale connectivity that situates the default-mode network at the opposite end of a spectrum from primary sensory and motor regions is described, suggesting that the role of the DMN in cognition might arise from its position at one extreme of a hierarchy, allowing it to process transmodal information that is unrelated to immediate sensory input.
Abstract: Understanding how the structure of cognition arises from the topographical organization of the cortex is a primary goal in neuroscience. Previous work has described local functional gradients extending from perceptual and motor regions to cortical areas representing more abstract functions, but an overarching framework for the association between structure and function is still lacking. Here, we show that the principal gradient revealed by the decomposition of connectivity data in humans and the macaque monkey is anchored by, at one end, regions serving primary sensory/motor functions and at the other end, transmodal regions that, in humans, are known as the default-mode network (DMN). These DMN regions exhibit the greatest geodesic distance along the cortical surface-and are precisely equidistant-from primary sensory/motor morphological landmarks. The principal gradient also provides an organizing spatial framework for multiple large-scale networks and characterizes a spectrum from unimodal to heteromodal activity in a functional metaanalysis. Together, these observations provide a characterization of the topographical organization of cortex and indicate that the role of the DMN in cognition might arise from its position at one extreme of a hierarchy, allowing it to process transmodal information that is unrelated to immediate sensory input.

1,346 citations

Journal ArticleDOI
TL;DR: Fast AnoGAN (f‐AnoGAN), a generative adversarial network (GAN) based unsupervised learning approach capable of identifying anomalous images and image segments, that can serve as imaging biomarker candidates is presented.

777 citations

Journal ArticleDOI
TL;DR: This article provides some necessary definitions to discriminate between explainability and causability as well as a use‐case of DL interpretation and of human explanation in histopathology, and argues that there is a need to go beyond explainable AI.
Abstract: Explainable artificial intelligence (AI) is attracting much interest in medicine. Technically, the problem of explainability is as old as AI itself and classic AI represented comprehensible retraceable approaches. However, their weakness was in dealing with uncertainties of the real world. Through the introduction of probabilistic learning, applications became increasingly successful, but increasingly opaque. Explainable AI deals with the implementation of transparency and traceability of statistical black-box machine learning methods, particularly deep learning (DL). We argue that there is a need to go beyond explainable AI. To reach a level of explainable medicine we need causability. In the same way that usability encompasses measurements for the quality of use, causability encompasses measurements for the quality of explanations. In this article, we provide some necessary definitions to discriminate between explainability and causability as well as a use-case of DL interpretation and of human explanation in histopathology. The main contribution of this article is the notion of causability, which is differentiated from explainability in that causability is a property of a person, while explainability is a property of a system This article is categorized under: Fundamental Concepts of Data and Knowledge > Human Centricity and User Interaction.

723 citations

Journal ArticleDOI
TL;DR: Radiomics is a rapidly evolving field of research concerned with the extraction of quantitative metrics-the so-called radiomic features-within medical images as discussed by the authors, which capture tissue and lesion characteristics such as heterogeneity and shape and may, alone or in combination with demographic, histologic, genomic, or proteomic data, be used for clinical problem solving.
Abstract: Radiomics is a rapidly evolving field of research concerned with the extraction of quantitative metrics-the so-called radiomic features-within medical images. Radiomic features capture tissue and lesion characteristics such as heterogeneity and shape and may, alone or in combination with demographic, histologic, genomic, or proteomic data, be used for clinical problem solving. The goal of this continuing education article is to provide an introduction to the field, covering the basic radiomics workflow: feature calculation and selection, dimensionality reduction, and data processing. Potential clinical applications in nuclear medicine that include PET radiomics-based prediction of treatment response and survival will be discussed. Current limitations of radiomics, such as sensitivity to acquisition parameter variations, and common pitfalls will also be covered.

440 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year, to survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks.

8,730 citations

Journal ArticleDOI
TL;DR: An overview of 3D Slicer is presented as a platform for prototyping, development and evaluation of image analysis tools for clinical research applications and the utility of the platform in the scope of QIN is illustrated.

4,786 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations