scispace - formally typeset
Search or ask a question
Author

George A. Katopis

Bio: George A. Katopis is an academic researcher from IBM. The author has contributed to research in topics: Chip & Electronic circuit. The author has an hindex of 19, co-authored 80 publications receiving 1496 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors analyzed short, medium, and long on-chip interconnections having linewidths of 0.45-52 /spl mu/m in a five-metal-layer structure.
Abstract: Short, medium, and long on-chip interconnections having linewidths of 0.45-52 /spl mu/m are analyzed in a five-metal-layer structure. We study capacitive coupling for short lines, inductive coupling for medium-length lines, inductance and resistance of the current return path in the power buses, and line resistive losses for the global wiring. Design guidelines and technology changes are proposed to achieve minimum delay and contain crosstalk for local and global wiring. Conditional expressions are given to determine when transmission-line effects are important for accurate delay and crosstalk prediction.

397 citations

Journal ArticleDOI
TL;DR: In this article, the design of IBM's S/390 computer for control of mid-frequency noise is discussed, where the power distribution and decoupling capacitors must supply that current without disturbing the voltage level at the circuits.
Abstract: Complementary metal-oxide-semiconductor (CMOS) microprocessors operating in the hundreds of megahertz create significant current deltas due to the variation in switching activity front clock cycle to clock cycle. In addition to the high-frequency voltage variations more commonly discussed, a lower frequency noise component is also produced that lasts from 50-200 ns which we refer to as mid-frequency noise. In this paper, we discuss the design of IBM's CMOS S/390 computer for control of mid-frequency noise. This machine has a 10-way multiprocessor on a 127 mm by 127 mm multichip module (MCM) on a FR4 board. The chips on the MCM cause a current step of tens of Amps in a few cycles that can be sustained for many cycles. The power distribution and decoupling capacitors must supply that current without disturbing the voltage level at the circuits. The design of the system power distribution and modeling and verification of mid-frequency noise in this system is presented.

93 citations

Proceedings ArticleDOI
18 May 1997
TL;DR: In this article, the authors analyzed short, medium and long on-chip interconnections having line widths of 0.45-52 /spl mu/m in a five-metal-layer structure and proposed design guidelines and technology changes to achieve minimum delay and contain crosstalk for local and global wiring.
Abstract: Short, medium and long on-chip interconnections having line widths of 0.45-52 /spl mu/m are analyzed in a five-metal-layer structure. We study capacitive coupling for short lines, inductive coupling for medium-length lines, inductance and resistance of the current return path in the power buses and line resistive losses for the global wiring. Design guidelines and technology changes are proposed to achieve minimum delay and contain crosstalk for local and global wiring. Conditional expressions are given to determine when transmission-line effects are important for accurate delay and crosstalk prediction.

86 citations

Journal ArticleDOI
R. Downing1, P. Gebler1, George A. Katopis1
TL;DR: In this paper, the decoupling capacitor efficiency in reducing the power supply differential switching noise of the multichip-module (MCM) package structure employed in the IBM ES/9000 system is described.
Abstract: The experimental procedures and test vehicles used for the characterization of the decoupling capacitor efficiency in reducing the power supply differential switching noise of the multichip-module (MCM) package structure employed in the IBM ES/9000 system are described. The experimental results are summarized for various switching elements. It is demonstrated that careful design of the test vehicles, tester systems, and probes makes the accurate measurement of Delta-1 noise feasible. Experimental results on the BOBCAT tester show that the decoupling capacitor efficiency in reducing the peak of the differential Delta-1 noise is 50-67%. This efficiency can be increased by reducing the effective inductance in the decoupling capacitor current return path. >

74 citations

Journal ArticleDOI
07 Feb 2005
TL;DR: In this article, the authors used a short-pulse propagation technique and an iterative extraction based on a rational function expansion to determine the frequency-dependent dielectric loss.
Abstract: In this paper, the self-consistent, frequency-dependent dielectric constant epsivr(f) and dielectric loss tandelta(f) of several materials are determined over the range 2 to 30 GHz using a short-pulse propagation technique and an iterative extraction based on a rational function expansion. The simple measurement technique is performed in the time domain on representative printed circuit board wiring. Broadband, fully causal transmission-line models based on these results are generated up to 50 GHz for card wiring using low loss materials including BT, Nelco N4000-13, and Nelco N4000-13SI. Simulation and modeling results highlight the need for the accurate frequency-dependent dielectric loss extraction. Signal propagation based on these results shows very good agreement with measured step and pulse time-domain excitations and provides validation of the measurement and model generation technique

60 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 2001
TL;DR: Wires that shorten in length as technologies scale have delays that either track gate delays or grow slowly relative to gate delays, which is good news since these "local" wires dominate chip wiring.
Abstract: Concern about the performance of wires wires in scaled technologies has led to research exploring other communication methods. This paper examines wire and gate delays as technologies migrate from 0.18-/spl mu/m to 0.035-/spl mu/m feature sizes to better understand the magnitude of the the wiring problem. Wires that shorten in length as technologies scale have delays that either track gate delays or grow slowly relative to gate delays. This result is good news since these "local" wires dominate chip wiring. Despite this scaling of local wire performance, computer-aided design (CAD) tools must still become move sophisticated in dealing with these wires. Under scaling, the total number of wires grows exponentially, so CAD tools will need to handle an ever-growing percentage of all the wires in order to keep designer workloads constant. Global wires present a more serious problem to designers. These are wires that do not scale in length since they communicate signals across the chip. The delay of these wives will remain constant if repeaters are used meaning that relative to gate delays, their delays scale upwards. These increased delays for global communication will drive architectures toward modular designs with explicit global latency mechanisms.

1,486 citations

Journal ArticleDOI
01 Jun 2000
TL;DR: Optical interconnects to silicon CMOS chips are discussed in this paper, where various arguments for introducing optical interconnections to silicon chips are summarized, and the challenges for optical, optoelectronic, and integration technologies are discussed.
Abstract: The various arguments for introducing optical interconnections to silicon CMOS chips are summarized, and the challenges for optical, optoelectronic, and integration technologies are discussed. Optics could solve many physical problems of interconnects, including precise clock distribution, system synchronization (allowing larger synchronous zones, both on-chip and between chips), bandwidth and density of long interconnections, and reduction of power dissipation. Optics may relieve a broad range of design problems, such as crosstalk, voltage isolation, wave reflection, impedence matching, and pin inductance. It may allow continued scaling of existing architectures and enable novel highly interconnected or high-bandwidth architectures. No physical breakthrough is required to implement dense optical interconnects to silicon chips, though substantial technological work remains. Cost is a significant barrier to practical introduction, though revolutionary approaches exist that might achieve economies of scale. An Appendix analyzes scaling of on-chop global electrical interconnects, including line inductance and the skin effect, both of which impose significant additional constraints on future interconnects.

1,233 citations

Journal ArticleDOI
01 May 2001
TL;DR: In this review paper various high-speed interconnect effects are briefly discussed, recent advances in transmission line macromodeling techniques are presented, and simulation of high- speed interconnects using model-reduction-based algorithms is discussed in detail.
Abstract: With the rapid developments in very large-scale integration (VLSI) technology, design and computer-aided design (CAD) techniques, at both the chip and package level, the operating frequencies are fast reaching the vicinity of gigahertz and switching times are getting to the subnanosecond levels. The ever increasing quest for high-speed applications is placing higher demands on interconnect performance and highlighted the previously negligible effects of interconnects such as ringing, signal delay, distortion, reflections, and crosstalk. In this review paper various high-speed interconnect effects are briefly discussed. In addition, recent advances in transmission line macromodeling techniques are presented. Also, simulation of high-speed interconnects using model-reduction-based algorithms is discussed in detail.

645 citations

Journal ArticleDOI
TL;DR: In this paper, the impedance versus frequency profiles of the power distribution system components including the voltage regulator module, bulk decoupling capacitors and high frequency ceramic capacitors are defined and reduced to simulation program with integrated circuit emphasis (SPICE) models.
Abstract: Power systems for modern complementary metal-oxide-semiconductor (CMOS) technology are becoming harder to design. One design methodology is to identify a target impedance to be met across a broad frequency range and specify components to meet that impedance. The impedance versus frequency profiles of the power distribution system components including the voltage regulator module, bulk decoupling capacitors and high frequency ceramic capacitors are defined and reduced to simulation program with integrated circuit emphasis (SPICE) models. A sufficient number of capacitors are placed in parallel to meet the target impedance. Ceramic capacitor equivalent series resistance (ESR) and ESL are extremely important parameters in determining how many capacitors are required. SPICE models are then analyzed in the time domain to find the response to load transients.

468 citations