scispace - formally typeset
Search or ask a question

Showing papers by "George Davey Smith published in 2019"


Journal ArticleDOI
TL;DR: MVMR analysis consistently estimates the direct causal effect of an exposure, or exposures, of interest and provides a powerful tool for determining causal effects in a wide range of scenarios with either individual- or summary-level data.
Abstract: Background Mendelian randomization (MR) is a powerful tool in epidemiology that can be used to estimate the causal effect of an exposure on an outcome in the presence of unobserved confounding, by utilizing genetic variants that are instrumental variables (IVs) for the exposure. This has been extended to multivariable MR (MVMR) to estimate the effect of two or more exposures on an outcome. Methods and results We use simulations and theory to clarify the interpretation of estimated effects in a MVMR analysis under a range of underlying scenarios, where a secondary exposure acts variously as a confounder, a mediator, a pleiotropic pathway and a collider. We then describe how instrument strength and validity can be assessed for an MVMR analysis in the single-sample setting, and develop tests to assess these assumptions in the popular two-sample summary data setting. We illustrate our methods using data from UK Biobank to estimate the effect of education and cognitive ability on body mass index. Conclusion MVMR analysis consistently estimates the direct causal effect of an exposure, or exposures, of interest and provides a powerful tool for determining causal effects in a wide range of scenarios with either individual- or summary-level data.

505 citations


Journal ArticleDOI
26 Nov 2019
TL;DR: The guidelines are divided into nine sections: motivation and scope, data sources, choice of genetic variants, variant harmonization, primary analysis, supplementary and sensitivity analyses, data presentation, and interpretation.
Abstract: This paper provides guidelines for performing Mendelian randomization investigations. It is aimed at practitioners seeking to undertake analyses and write up their findings, and at journal editors and reviewers seeking to assess Mendelian randomization manuscripts. The guidelines are divided into nine sections: motivation and scope, data sources, choice of genetic variants, variant harmonization, primary analysis, supplementary and sensitivity analyses (one section on robust statistical methods and one on other approaches), data presentation, and interpretation. These guidelines will be updated based on feedback from the community and advances in the field. Updates will be made periodically as needed, and at least every 18 months.

491 citations



Journal ArticleDOI
TL;DR: An expanded GWAS of birth weight and subsequent analysis using structural equation modeling and Mendelian randomization decomposes maternal and fetal genetic contributions and causal links between birth weight, blood pressure and glycemic traits.
Abstract: Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.

323 citations


Journal ArticleDOI
TL;DR: Genetic epidemiology shows that the apparently protective effects of moderate alcohol intake against stroke are largely non-causal, and appears in this one study to have little net effect on the risk of myocardial infarction.

287 citations


Journal ArticleDOI
TL;DR: Integrated eQTL colocalization, fine-mapping, and rare-disease data identify putative effector genes for osteoarthritis, including TGFB1 (transforming growth factor beta 1), FGF18 (fibroblast growth factor 18), CTSK (cathepsin K), and IL11 (interleukin 11).
Abstract: Osteoarthritis is the most common musculoskeletal disease and the leading cause of disability globally. Here, we performed a genome-wide association study for osteoarthritis (77,052 cases and 378,169 controls), analyzing four phenotypes: knee osteoarthritis, hip osteoarthritis, knee and/or hip osteoarthritis, and any osteoarthritis. We discovered 64 signals, 52 of them novel, more than doubling the number of established disease loci. Six signals fine-mapped to a single variant. We identified putative effector genes by integrating expression quantitative trait loci (eQTL) colocalization, fine-mapping, and human rare-disease, animal-model, and osteoarthritis tissue expression data. We found enrichment for genes underlying monogenic forms of bone development diseases, and for the collagen formation and extracellular matrix organization biological pathways. Ten of the likely effector genes, including TGFB1 (transforming growth factor beta 1), FGF18 (fibroblast growth factor 18), CTSK (cathepsin K), and IL11 (interleukin 11), have therapeutics approved or in clinical trials, with mechanisms of action supportive of evaluation for efficacy in osteoarthritis.

271 citations


Journal ArticleDOI
TL;DR: The use of modified weights within two-sample summary-data MR studies is proposed for accurately quantifying heterogeneity and detecting outliers in the presence of weak instruments.
Abstract: BACKGROUND Two-sample summary-data Mendelian randomization (MR) incorporating multiple genetic variants within a meta-analysis framework is a popular technique for assessing causality in epidemiology. If all genetic variants satisfy the instrumental variable (IV) and necessary modelling assumptions, then their individual ratio estimates of causal effect should be homogeneous. Observed heterogeneity signals that one or more of these assumptions could have been violated. METHODS Causal estimation and heterogeneity assessment in MR require an approximation for the variance, or equivalently the inverse-variance weight, of each ratio estimate. We show that the most popular 'first-order' weights can lead to an inflation in the chances of detecting heterogeneity when in fact it is not present. Conversely, ostensibly more accurate 'second-order' weights can dramatically increase the chances of failing to detect heterogeneity when it is truly present. We derive modified weights to mitigate both of these adverse effects. RESULTS Using Monte Carlo simulations, we show that the modified weights outperform first- and second-order weights in terms of heterogeneity quantification. Modified weights are also shown to remove the phenomenon of regression dilution bias in MR estimates obtained from weak instruments, unlike those obtained using first- and second-order weights. However, with small numbers of weak instruments, this comes at the cost of a reduction in estimate precision and power to detect a causal effect compared with first-order weighting. Moreover, first-order weights always furnish unbiased estimates and preserve the type I error rate under the causal null. We illustrate the utility of the new method using data from a recent two-sample summary-data MR analysis to assess the causal role of systolic blood pressure on coronary heart disease risk. CONCLUSIONS We propose the use of modified weights within two-sample summary-data MR studies for accurately quantifying heterogeneity and detecting outliers in the presence of weak instruments. Modified weights also have an important role to play in terms of causal estimation (in tandem with first-order weights) but further research is required to understand their strengths and weaknesses in specific settings.

225 citations


01 Jan 2019
TL;DR: A genetic study identifies hundreds of loci associated with risk tolerance and risky behaviors, finds evidence of substantial shared genetic influences across these phenotypes, and implicates genes involved in neurotransmission.

175 citations


Journal ArticleDOI
TL;DR: This paper identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank.
Abstract: Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.

171 citations


Journal ArticleDOI
TL;DR: A well-standardized metabolomics platform is used to identify metabolic predictors of long-term mortality in the circulation of 44,168 individuals and identifies key metabolites independently associated with all-cause mortality risk.
Abstract: Predicting longer-term mortality risk requires collection of clinical data, which is often cumbersome. Therefore, we use a well-standardized metabolomics platform to identify metabolic predictors of long-term mortality in the circulation of 44,168 individuals (age at baseline 18–109), of whom 5512 died during follow-up. We apply a stepwise (forward-backward) procedure based on meta-analysis results and identify 14 circulating biomarkers independently associating with all-cause mortality. Overall, these associations are similar in men and women and across different age strata. We subsequently show that the prediction accuracy of 5- and 10-year mortality based on a model containing the identified biomarkers and sex (C-statistic = 0.837 and 0.830, respectively) is better than that of a model containing conventional risk factors for mortality (C-statistic = 0.772 and 0.790, respectively). The use of the identified metabolic profile as a predictor of mortality or surrogate endpoint in clinical studies needs further investigation.

160 citations


Journal ArticleDOI
05 Mar 2019-eLife
TL;DR: Findings were inverse associations with measures of cognitive function which extensive follow-up analyses using Mendelian randomization provided evidence of a causal relationship and the effect of multiple risk factors on disease using mediation and multivariable MR frameworks.
Abstract: The age of large-scale genome-wide association studies (GWAS) has provided us with an unprecedented opportunity to evaluate the genetic liability of complex disease using polygenic risk scores (PRS). In this study, we have analysed 162 PRS (p<5×10-05) derived from GWAS and 551 heritable traits from the UK Biobank study (N = 334,398). Findings can be investigated using a web application (http:‌//‌mrcieu.‌mrsoftware.org/‌PRS‌_atlas/), which we envisage will help uncover both known and novel mechanisms which contribute towards disease susceptibility. To demonstrate this, we have investigated the results from a phenome-wide evaluation of schizophrenia genetic liability. Amongst findings were inverse associations with measures of cognitive function which extensive follow-up analyses using Mendelian randomization (MR) provided evidence of a causal relationship. We have also investigated the effect of multiple risk factors on disease using mediation and multivariable MR frameworks. Our atlas provides a resource for future endeavours seeking to unravel the causal determinants of complex disease.

Posted ContentDOI
05 May 2019-bioRxiv
TL;DR: Evaluation of historic data from 268 drug development programmes showed that target-indication pairs with MR and colocalization support were considerably more likely to succeed, evidencing the value of this approach in identifying and prioritising potential therapeutic targets.
Abstract: The human proteome is a major source of therapeutic targets. Recent genetic association analyses of the plasma proteome enable systematic evaluation of the causal consequences of variation in plasma protein levels. Here, we estimated the effects of 1002 proteins on 225 phenotypes using two-sample Mendelian randomization (MR) and colocalization. Of 413 associations supported by evidence from MR, 130 (31.5%) were not supported by results of colocalization analyses, suggesting that genetic confounding due to linkage disequilibrium (LD) is widespread in naive phenome-wide association studies of proteins. Combining MR and colocalization evidence in cis-only analyses, we identified 111 putatively causal effects between 65 proteins and 52 disease-related phenotypes (www.epigraphdb.org/pqtl/). Evaluation of data from historic drug development programmes showed that target-indication pairs with MR and colocalization support were more likely to be approved, evidencing the value of our approach in identifying and prioritising potential therapeutic targets.

Journal ArticleDOI
TL;DR: In this article, the behavior of the Lasso for selecting invalid instruments in linear instrumental variables models for estimating causal effects of exposures on outcomes was investigated, as proposed recently by Ka...
Abstract: We investigate the behavior of the Lasso for selecting invalid instruments in linear instrumental variables models for estimating causal effects of exposures on outcomes, as proposed recently by Ka...

Journal ArticleDOI
02 Sep 2019-JAMA
TL;DR: Lifelong genetic exposure to lower levels of low-density lipoprotein cholesterol and lower systolic blood pressure was associated with lower cardiovascular risk, but these findings cannot be assumed to represent the magnitude of benefit achievable from treatment of these risk factors.
Abstract: Importance The relationship between exposure to lower low-density lipoprotein cholesterol (LDL-C) and lower systolic blood pressure (SBP) with the risk of cardiovascular disease has not been reliably quantified. Objective To assess the association of lifetime exposure to the combination of both lower LDL-C and lower SBP with the lifetime risk of cardiovascular disease. Design, Setting, and Participants Among 438 952 participants enrolled in the UK Biobank between 2006 and 2010 and followed up through 2018, genetic LDL-C and SBP scores were used as instruments to divide participants into groups with lifetime exposure to lower LDL-C, lower SBP, or both. Differences in plasma LDL-C, SBP, and cardiovascular event rates between the groups were compared to estimate associations with lifetime risk of cardiovascular disease. Exposures Differences in plasma LDL-C and SBP compared with participants with both genetic scores below the median. Genetic risk scores higher than the median were associated with lower LDL-C and lower SBP. Main Outcomes and Measures Odds ratio (OR) for major coronary events, defined as coronary death, nonfatal myocardial infarction, or coronary revascularization. Results The mean age of the 438 952 participants was 65.2 years (range, 40.4-80.0 years), 54.1% were women, and 24 980 experienced a first major coronary event. Compared with the reference group, participants with LDL-C genetic scores higher than the median had 14.7-mg/dL lower LDL-C levels and an OR of 0.73 for major coronary events (95% CI, 0.70-0.75;P Conclusions and Relevance Lifelong genetic exposure to lower levels of low-density lipoprotein cholesterol and lower systolic blood pressure was associated with lower cardiovascular risk. However, these findings cannot be assumed to represent the magnitude of benefit achievable from treatment of these risk factors.

Journal ArticleDOI
Leanne K. Küpers, Claire Monnereau1, Gemma C Sharp2, Paul Yousefi2  +148 moreInstitutions (58)
TL;DR: In this article, a meta-analysis of epigenome-wide association studies of 8,825 neonates from 24 birth cohorts in the Pregnancy And Childhood Epigenetics Consortium was conducted, and the authors found that DNA methylation in neonatal blood is associated with birthweight at 914 sites, with a difference in birthweight ranging from -183 to 178 grams per 10% increase in methylation.
Abstract: Birthweight is associated with health outcomes across the life course, DNA methylation may be an underlying mechanism. In this meta-analysis of epigenome-wide association studies of 8,825 neonates from 24 birth cohorts in the Pregnancy And Childhood Epigenetics Consortium, we find that DNA methylation in neonatal blood is associated with birthweight at 914 sites, with a difference in birthweight ranging from -183 to 178 grams per 10% increase in methylation (PBonferroni < 1.06 x 10-7). In additional analyses in 7,278 participants, <1.3% of birthweight-associated differential methylation is also observed in childhood and adolescence, but not adulthood. Birthweight-related CpGs overlap with some Bonferroni-significant CpGs that were previously reported to be related to maternal smoking (55/914, p = 6.12 x 10-74) and BMI in pregnancy (3/914, p = 1.13x10-3), but not with those related to folate levels in pregnancy. Whether the associations that we observe are causal or explained by confounding or fetal growth influencing DNA methylation (i.e. reverse causality) requires further research.

Journal ArticleDOI
TL;DR: Evidence that higher BMI leads to a higher risk of psoriasis is provided, which supports the prioritization of therapies and lifestyle interventions aimed at controlling weight for the prevention or treatment of this common skin disease.
Abstract: In a mendelian randomization study, Ashley Budu-Aggrey and co-workers study the influence of body mass index on psoriasis.

Journal ArticleDOI
TL;DR: It is explained how studies of related individuals such as sibling pairs or parent-offspring trios can be used to overcome some of these sources of bias, to provide potentially more reliable evidence regarding causal processes.
Abstract: Mendelian randomization (MR) is increasingly used to make causal inferences in a wide range of fields, from drug development to etiologic studies. Causal inference in MR is possible because of the process of genetic inheritance from parents to offspring. Specifically, at gamete formation and conception, meiosis ensures random allocation to the offspring of one allele from each parent at each locus, and these are unrelated to most of the other inherited genetic variants. To date, most MR studies have used data from unrelated individuals. These studies assume that genotypes are independent of the environment across a sample of unrelated individuals, conditional on covariates. Here we describe potential sources of bias, such as transmission ratio distortion, selection bias, population stratification, dynastic effects and assortative mating that can induce spurious or biased SNP-phenotype associations. We explain how studies of related individuals such as sibling pairs or parent-offspring trios can be used to overcome some of these sources of bias, to provide potentially more reliable evidence regarding causal processes. The increasing availability of data from related individuals in large cohort studies presents an opportunity to both overcome some of these biases and also to evaluate familial environmental effects.

Journal ArticleDOI
TL;DR: In this paper, Mendelian randomization (MR) and mediation techniques were used to predict 213 causal relationships between expression and DNA methylation, approximately two-thirds of which predict methylation to causally influence expression.
Abstract: We integrate comeasured gene expression and DNA methylation (DNAme) in 265 human skeletal muscle biopsies from the FUSION study with >7 million genetic variants and eight physiological traits: height, waist, weight, waist-hip ratio, body mass index, fasting serum insulin, fasting plasma glucose, and type 2 diabetes. We find hundreds of genes and DNAme sites associated with fasting insulin, waist, and body mass index, as well as thousands of DNAme sites associated with gene expression (eQTM). We find that controlling for heterogeneity in tissue/muscle fiber type reduces the number of physiological trait associations, and that long-range eQTMs (>1 Mb) are reduced when controlling for tissue/muscle fiber type or latent factors. We map genetic regulators (quantitative trait loci; QTLs) of expression (eQTLs) and DNAme (mQTLs). Using Mendelian randomization (MR) and mediation techniques, we leverage these genetic maps to predict 213 causal relationships between expression and DNAme, approximately two-thirds of which predict methylation to causally influence expression. We use MR to integrate FUSION mQTLs, FUSION eQTLs, and GTEx eQTLs for 48 tissues with genetic associations for 534 diseases and quantitative traits. We identify hundreds of genes and thousands of DNAme sites that may drive the reported disease/quantitative trait genetic associations. We identify 300 gene expression MR associations that are present in both FUSION and GTEx skeletal muscle and that show stronger evidence of MR association in skeletal muscle than other tissues, which may partially reflect differences in power across tissues. As one example, we find that increased RXRA muscle expression may decrease lean tissue mass.

Posted ContentDOI
15 Jul 2019
TL;DR: The following draft of the STROBE-MR checklist is open for public discussion and all feedback will be taken into account during its next revision.
Abstract: While the number of studies using Mendelian randomization (MR) methods has grown exponentially in the last decade, the quality of reporting of these studies often has been poor. Similar to other reporting guidelines such as CONSORT (Consolidated Standards of Reporting Trials) for randomised trials and STROBE (STrenghtening the Reporting of Observational studies in Epidemiology) for observational studies in epidemiology, the STROBE-MR working group aims to provide guidance to authors on how to improve reporting of MR studies and help readers, reviewers, and journal editors to evaluate the quality of the presented evidence. Empirical evidence indicates that many reports of MR studies do not clearly state or examine the various assumptions of MR methods and report insufficient details on the data sources, which makes it hard to evaluate the quality and reliability of the results. The STROBE-MR guidance covers both one sample and two sample MR studies. At present, the draft checklist consists of 20 items, organized into the title and abstract, introduction, methods, results and discussion sections of articles. As these guidelines aim to reach the entire MR community, we would like to give everyone the opportunity to contribute their comments. The following draft of the STROBE-MR checklist is open for public discussion and all feedback will be taken into account during its next revision. For feedback, please use the comment section below this post on PeerJ Preprints. We hope the final guidelines will serve the entire community and contribute to improving the reporting of MR studies in the future.

Journal ArticleDOI
17 Sep 2019-eLife
TL;DR: If the Mendelian randomization assumptions hold, these findings suggest that both intelligence and education affect health.
Abstract: Highly educated people tend to be healthier and have higher incomes than those with less schooling. This might be because education helps people adopt a healthier lifestyle, as well as qualifying them for better-paid jobs. But, on average, highly educated people also score more highly on cognitive tests. This may explain why they tend to adopt healthier behaviours, such as being less likely to smoke. Because education and intelligence are so closely related, it is difficult to tease apart their roles in people’s health. Davies et al. have now turned to genetics to explore this question, focusing on genetic variation associated with intelligence and education levels. Analysing genetic and lifestyle data from almost 140,000 healthy middle-aged volunteers from the UK Biobank study suggested that together, intelligence and education influence many life outcomes, but also that they have independent effects. For instance, there is evidence that more intelligent people tend to earn more, irrespective of their education. However, more educated people also tend to earn more, even after accounting for their intelligence. They also tend to have lower BMIs, be less likely to smoke, and engage in less sedentary behaviour and more frequent vigorous exercise in midlife. For each of these outcomes, the effects of education are all in addition to the effects of intelligence. Education and intelligence thus affect life outcomes together and independently. Overall, the results of Davies et al. suggest that extending education, for example by increasing school-leaving age, could make the population as a whole healthier. However, the individuals in the current study grew up when smoking was far more common than it is today. Some of the observed effects on health may thus be due to differences in smoking rates between groups with different levels of education. If so, increasing education may not have as much impact today as it did in the past. It is also possible that these findings reflect the effects of the family environment, for example how parents influence their offspring. Larger studies are needed to investigate this hypothesis.

Leanne K. Küpers, Claire Monnereau, Gemma C Sharp, Paul Yousefi, Lucas A. Salas, Akram Ghantous, Christian M. Page, Sarah E. Reese, Allen J. Wilcox, Darina Czamara, Anne P. Starling, Alexei Novoloaca, Samantha Lent, Ritu Roy, Cathrine Hoyo, Carrie V. Breton, Catherine Allard, Allan C. Just, Kelly M. Bakulski, John W. Holloway, Todd M. Everson, Cheng-Jian Xu, Rae-Chi Huang, Diana A van der Plaat, Matthias Wielscher, Simon Kebede Merid, Vilhelmina Ullemar, Rezwan, Faisal, I, Jari Lahti, Jenny van Dongen, Sabine A. S. Langie, Tom G. Richardson, Maria C. Magnus, Ellen A. Nohr, Zongli Xu, Liesbeth Duijts, Shanshan Zhao, Weiming Zhang, Michelle Plusquin, Dawn L. DeMeo, Olivia Solomon, Joosje H. Heimovaara, Dereje D. Jima, Lu Gao, Mariona Bustamante, Patrice Perron, Robert O. Wright, Irva Hertz-Picciotto, Hongmei Zhang, Margaret R. Karagas, Ulrike Gehring, Carmen J. Marsit, Lawrence J. Beilin, Judith M. Vonk, Marjo-Riitta Järvelin, Anna Bergström, Anne K. Örtqvist, Susan Ewart, Pia M. Villa, Sophie E. Moore, Gonneke Willemsen, Arnout Standaert, Siri E. Håberg, Thorkild I. A. Sørensen, Jack A. Taylor, Katri Räikkönen, Ivana V. Yang, Katerina Kechris, Tim S. Nawrot, Matt J. Silver, Yun Yun Gong, Lorenzo Richiardi, Manolis Kogevinas, Augusto A. Litonjua, Brenda Eskenazi, Karen Huen, Hamdi Mbarek, Rachel L. Maguire, Terence Dwyer, Martine Vrijheid, Luigi Bouchard, Andrea A. Baccarelli, Lisa A. Croen, Wilfried Karmaus, Denise Anderson, Maaike de Vries, Sylvain Sebert, Juha Kere, Robert Karlsson, Syed Hasan Arshad, Esa Hämäläinen, Michael N. Routledge, Boomsma, Dorret, I, Andrew P. Feinberg, Craig J. Newschaffer, Eva Govarts, Matthieu Moisse, M. Daniele Fallin, Erik Melén, Andrew M. Prentice, Eero Kajantie, Catarina Almqvist, Emily Oken, Dana Dabelea, H. Marike Boezen, Phillip E. Melton, Rosalind J. Wright, Gerard H. Koppelman, Letizia Trevisi, Marie-France Hivert, Jordi Sunyer, Monica Cheng Munthe-Kaas, Susan K. Murphy, Eva Corpeleijn, Joseph L. Wiemels, Nina Holland, Zdenko Herceg, Elisabeth B. Binder, George Davey Smith, Vincent W. V. Jaddoe, Rolv T. Lie, Wenche Nystad, Stephanie J. London, Debbie A Lawlor, Caroline L Relton, Harold Snieder, Janine F. Felix 
01 Jan 2019
TL;DR: A meta-analysis of epigenome-wide association studies of 8,825 neonates from 24 birth cohorts in the Pregnancy And Childhood Epigenetics Consortium finds that DNA methylation in neonatal blood is associated with birthweight at 914 sites, with a difference in birthweight ranging from −183 to 178 grams per 10% increase in methylation.

Posted ContentDOI
09 Apr 2019-bioRxiv
TL;DR: Differences between population-based and within-family based MR estimates are found, indicating the importance of controlling for family effects and population structure in Mendelian randomization studies.
Abstract: Mendelian randomization (MR) is a widely-used method for causal inference using genetic data. Mendelian randomization studies of unrelated individuals may be susceptible to bias from family structure, for example, through dynastic effects which occur when parental genotypes directly affect offspring phenotypes. Here we describe methods for within-family Mendelian randomization and through simulations show that family-based methods can overcome bias due to dynastic effects. We illustrate these issues empirically using data from 62,470 siblings from the UK Biobank and Nord-Trondelag Health Study. Both within-family and population-based Mendelian randomization analyses reproduced established effects of lower BMI reducing risk of diabetes and high blood pressure. However, while MR estimates from population-based samples of unrelated individuals suggested that taller height and lower BMI increase educational attainment, these effects largely disappeared in within-family MR analyses. We found differences between population-based and within-family based estimates, indicating the importance of controlling for family effects and population structure in Mendelian randomization studies.

Journal ArticleDOI
David W. Clark1, Yukinori Okada2, Kristjan H. S. Moore3, Dan Mason  +493 moreInstitutions (142)
TL;DR: In this paper, the authors used genomic inbreeding coefficients (FROH) for >1.4 million individuals and found that FROH is significantly associated with apparently deleterious changes in 32 out of 100 traits analysed.
Abstract: In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (FROH) for >1.4 million individuals, we show that FROH is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: FROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44-66%] in the odds of having children. Finally, the effects of FROH are confirmed within full-sibling pairs, where the variation in FROH is independent of all environmental confounding.

Journal ArticleDOI
TL;DR: The findings suggest that mothers at high genetic risk for attention-deficit/hyperactivity disorder may also be at increased risk for some adverse pregnancy exposures, and future studies should triangulate evidence from different causally informative approaches.
Abstract: Importance Early-life exposures, such as prenatal maternal lifestyle, illnesses, nutritional deficiencies, toxin levels, and adverse birth events, have long been considered potential risk factors for neurodevelopmental disorders in offspring. However, maternal genetic factors could be confounding the association between early-life exposures and neurodevelopmental outcomes in offspring, which makes inferring a causal relationship problematic. Objective To test whether maternal polygenic risk scores (PRSs) for neurodevelopmental disorders were associated with early-life exposures previously linked to the disorders. Design, Setting, and Participants In this UK population-based cohort study, 7921 mothers with genotype data from the Avon Longitudinal Study of Parents and Children (ALSPAC) underwent testing for association of maternal PRS for attention-deficit/hyperactivity disorder (ADHD PRS), autism spectrum disorder (ASD PRS), and schizophrenia (SCZ PRS) with 32 early-life exposures. ALSPAC data collection began September 6, 1990, and is ongoing. Data were analyzed for the current study from April 1 to September 1, 2018. Exposures Maternal ADHD PRS, ASD PRS, and SCZ PRS were calculated using discovery effect size estimates from the largest available genome-wide association study and a significance threshold ofP Main Outcomes and Measures Outcomes measured included questionnaire data on maternal lifestyle and behavior (eg, smoking, alcohol consumption, body mass index, and maternal age), maternal use of nutritional supplements and medications in pregnancy (eg, acetaminophen, iron, zinc, folic acid, and vitamins), maternal illnesses (eg, diabetes, hypertension, rheumatism, psoriasis, and depression), and perinatal factors (eg, birth weight, preterm birth, and cesarean delivery). Results Maternal PRSs were available from 7921 mothers (mean [SD] age, 28.5 [4.8] years). The ADHD PRS was associated with multiple prenatal factors, including infections (odds ratio [OR], 1.11; 95% CI, 1.04-1.18), use of acetaminophen during late pregnancy (OR, 1.11; 95% CI, 1.04-1.18), lower blood levels of mercury (β coefficient, −0.06; 95% CI, −0.11 to −0.02), and higher blood levels of cadmium (β coefficient, 0.07; 95% CI, 0.05-0.09). Little evidence of associations between ASD PRS or SCZ PRS and prenatal factors or of association between any of the PRSs and adverse birth events was found. Sensitivity analyses revealed consistent results. Conclusions and Relevance These findings suggest that maternal risk alleles for neurodevelopmental disorders, primarily ADHD, are associated with some pregnancy-related exposures. These findings highlight the need to carefully account for potential genetic confounding and triangulate evidence from different approaches when assessing the effects of prenatal exposures on neurodevelopmental disorders in offspring.

Journal ArticleDOI
TL;DR: It is concluded that selection bias can have a major effect on an IV analysis, and further research is needed on how to conduct sensitivity analyses when selection depends on unmeasured data.
Abstract: Participants in epidemiologic and genetic studies are rarely true random samples of the populations they are intended to represent, and both known and unknown factors can influence participation in a study (known as selection into a study). The circumstances in which selection causes bias in an inst

Journal ArticleDOI
Alexessander Couto Alves1, Alexessander Couto Alves2, N. Maneka G. De Silva1, Ville Karhunen1, Ulla Sovio3, Shikta Das4, Shikta Das1, H. Rob Taal5, H. Rob Taal6, Nicole M. Warrington7, Nicole M. Warrington8, Alexandra M. Lewin9, Alexandra M. Lewin1, Marika Kaakinen2, Marika Kaakinen1, Diana L. Cousminer10, Diana L. Cousminer11, Diana L. Cousminer12, Elisabeth Thiering13, Nicholas J. Timpson14, Tom Bond1, Estelle Lowry15, Christopher D. Brown16, Xavier Estivill, Virpi Lindi11, Jonathan P. Bradfield12, Frank Geller17, Doug Speed4, Doug Speed18, Lachlan J. M. Coin8, Lachlan J. M. Coin1, Marie Loh1, Marie Loh15, Marie Loh19, Sheila J. Barton20, Sheila J. Barton21, Lawrence J. Beilin7, Hans Bisgaard22, Klaus Bønnelykke22, Rohia Alili, Ida J. Hatoum23, Katharina Schramm24, Rufus Cartwright1, Marie-Aline Charles25, Vincenzo Salerno1, Karine Clément25, Annique Claringbould, Cornelia M. van Duijn5, Elena Moltchanova26, Johan G. Eriksson10, Johan G. Eriksson27, Cathy E. Elks3, Bjarke Feenstra17, Claudia Flexeder, Stephen Franks1, Timothy M. Frayling28, Rachel M. Freathy28, Paul Elliott29, Paul Elliott1, Elisabeth Widen10, Hakon Hakonarson, Andrew T. Hattersley28, Alina Rodriguez30, Alina Rodriguez1, Marco Banterle9, Joachim Heinrich, Barbara Heude25, John W. Holloway31, Albert Hofman5, Elina Hyppönen32, Elina Hyppönen33, Hazel Inskip21, Hazel Inskip20, Lee M. Kaplan23, Åsa K. Hedman34, Åsa K. Hedman35, Esa Läärä15, Holger Prokisch24, Harald Grallert, Timo A. Lakka11, Debbie A Lawlor14, Mads Melbye17, Mads Melbye36, Mads Melbye22, Tarunveer S. Ahluwalia22, Marcella Marinelli, Iona Y Millwood35, Iona Y Millwood37, Lyle J. Palmer38, Craig E. Pennell7, John R. B. Perry3, Susan M. Ring14, Markku J. Savolainen15, Fernando Rivadeneira5, Marie Standl, Jordi Sunyer, Carla M. T. Tiesler13, André G. Uitterlinden5, William Schierding39, Justin M. O'Sullivan39, Inga Prokopenko, Karl-Heinz Herzig, George Davey Smith14, Paul F. O'Reilly1, Paul F. O'Reilly40, Janine F. Felix5, Janine F. Felix6, Jessica L. Buxton41, Alexandra I. F. Blakemore42, Alexandra I. F. Blakemore1, Ken K. Ong3, Vincent W. V. Jaddoe5, Struan F.A. Grant, Sylvain Sebert15, Sylvain Sebert1, Mark I. McCarthy43, Mark I. McCarthy35, Marjo-Riitta Järvelin 
TL;DR: A robust overlap is found between the genetics of child and adult body mass index (BMI), with variants associated with adult BMI acting as early as 4 to 6 years old, and a completely distinct genetic makeup for peak BMI during infancy is demonstrated, influenced by variation at the LEPR/LEPROT locus.
Abstract: Early childhood growth patterns are associated with adult health, yet the genetic factors and the developmental stages involved are not fully understood. Here, we combine genome-wide association studies with modeling of longitudinal growth traits to study the genetics of infant and child growth, followed by functional, pathway, genetic correlation, risk score, and colocalization analyses to determine how developmental timings, molecular pathways, and genetic determinants of these traits overlap with those of adult health. We found a robust overlap between the genetics of child and adult body mass index (BMI), with variants associated with adult BMI acting as early as 4 to 6 years old. However, we demonstrated a completely distinct genetic makeup for peak BMI during infancy, influenced by variation at the LEPR/LEPROT locus. These findings suggest that different genetic factors control infant and child BMI. In light of the obesity epidemic, these findings are important to inform the timing and targets of prevention strategies.

Journal ArticleDOI
TL;DR: This comprehensive MR phenome-wide association study identified potential causal effects of BMI on a large and diverse set of phenotypes, including both previously identified causal effects, and novel effects such as a protective effect of higher BMI on feelings of nervousness.
Abstract: Mendelian randomization (MR) has been used to estimate the causal effect of body mass index (BMI) on particular traits thought to be affected by BMI. However, BMI may also be a modifiable, causal risk factor for outcomes where there is no prior reason to suggest that a causal effect exists. We performed a MR phenome-wide association study (MR-pheWAS) to search for the causal effects of BMI in UK Biobank (n = 334 968), using the PHESANT open-source phenome scan tool. A subset of identified associations were followed up with a formal two-stage instrumental variable analysis in UK Biobank, to estimate the causal effect of BMI on these phenotypes. Of the 22 922 tests performed, our MR-pheWAS identified 587 associations below a stringent P value threshold corresponding to a 5% estimated false discovery rate. These included many previously identified causal effects, for instance, an adverse effect of higher BMI on risk of diabetes and hypertension. We also identified several novel effects, including protective effects of higher BMI on a set of psychosocial traits, identified initially in our preliminary MR-pheWAS in circa 115,000 UK Biobank participants and replicated in a different subset of circa 223,000 UK Biobank participants. Our comprehensive MR-pheWAS identified potential causal effects of BMI on a large and diverse set of phenotypes. This included both previously identified causal effects, and novel effects such as a protective effect of higher BMI on feelings of nervousness.

Journal ArticleDOI
TL;DR: There was strong evidence that genetic liability to endometriosis was associated with an increased risk of invasive epithelial ovarian cancer and there was little evidence for an association with type 2 diabetes, parity, or circulating levels of 25-hydroxyvitamin D and sex hormone binding globulin with ovarian cancer or its subtypes.
Abstract: Background Various risk factors have been associated with epithelial ovarian cancer risk in observational epidemiological studies. However, the causal nature of the risk factors reported, and thus their suitability as effective intervention targets, is unclear given the susceptibility of conventional observational designs to residual confounding and reverse causation. Mendelian randomization (MR) uses genetic variants as proxies for risk factors to strengthen causal inference in observational studies. We used MR to evaluate the association of 12 previously reported risk factors (reproductive, anthropometric, clinical, lifestyle, and molecular factors) with risk of invasive epithelial ovarian cancer, invasive epithelial ovarian cancer histotypes, and low malignant potential tumours. Methods and findings Genetic instruments to proxy 12 risk factors were constructed by identifying single nucleotide polymorphisms (SNPs) that were robustly (P < 5 × 10−8) and independently associated with each respective risk factor in previously reported genome-wide association studies. These risk factors included genetic liability to 3 factors (endometriosis, polycystic ovary syndrome, type 2 diabetes) scaled to reflect a 50% higher odds liability to disease. We obtained summary statistics for the association of these SNPs with risk of overall and histotype-specific invasive epithelial ovarian cancer (22,406 cases; 40,941 controls) and low malignant potential tumours (3,103 cases; 40,941 controls) from the Ovarian Cancer Association Consortium (OCAC). The OCAC dataset comprises 63 genotyping project/case–control sets with participants of European ancestry recruited from 14 countries (US, Australia, Belarus, Germany, Belgium, Denmark, Finland, Norway, Canada, Poland, UK, Spain, Netherlands, and Sweden). SNPs were combined into multi-allelic inverse-variance-weighted fixed or random effects models to generate effect estimates and 95% confidence intervals (CIs). Three complementary sensitivity analyses were performed to examine violations of MR assumptions: MR–Egger regression and weighted median and mode estimators. A Bonferroni-corrected P value threshold was used to establish strong evidence (P < 0.0042) and suggestive evidence (0.0042 < P < 0.05) for associations. In MR analyses, there was strong or suggestive evidence that 2 of the 12 risk factors were associated with invasive epithelial ovarian cancer and 8 of the 12 were associated with 1 or more invasive epithelial ovarian cancer histotypes. There was strong evidence that genetic liability to endometriosis was associated with an increased risk of invasive epithelial ovarian cancer (odds ratio [OR] per 50% higher odds liability: 1.10, 95% CI 1.06–1.15; P = 6.94 × 10−7) and suggestive evidence that lifetime smoking exposure was associated with an increased risk of invasive epithelial ovarian cancer (OR per unit increase in smoking score: 1.36, 95% CI 1.04–1.78; P = 0.02). In analyses examining histotypes and low malignant potential tumours, the strongest associations found were between height and clear cell carcinoma (OR per SD increase: 1.36, 95% CI 1.15–1.61; P = 0.0003); age at natural menopause and endometrioid carcinoma (OR per year later onset: 1.09, 95% CI 1.02–1.16; P = 0.007); and genetic liability to polycystic ovary syndrome and endometrioid carcinoma (OR per 50% higher odds liability: 0.89, 95% CI 0.82–0.96; P = 0.002). There was little evidence for an association of genetic liability to type 2 diabetes, parity, or circulating levels of 25-hydroxyvitamin D and sex hormone binding globulin with ovarian cancer or its subtypes. The primary limitations of this analysis include the modest statistical power for analyses of risk factors in relation to some less common ovarian cancer histotypes (low grade serous, mucinous, and clear cell carcinomas), the inability to directly examine the association of some ovarian cancer risk factors that did not have robust genetic variants available to serve as proxies (e.g., oral contraceptive use, hormone replacement therapy), and the assumption of linear relationships between risk factors and ovarian cancer risk. Conclusions Our comprehensive examination of possible aetiological drivers of ovarian carcinogenesis using germline genetic variants to proxy risk factors supports a role for few of these factors in invasive epithelial ovarian cancer overall and suggests distinct aetiologies across histotypes. The identification of novel risk factors remains an important priority for the prevention of epithelial ovarian cancer.

Journal ArticleDOI
26 Jun 2019-BMJ
TL;DR: In this article, the authors examined whether sleep traits have a causal effect on risk of breast cancer and found consistent evidence for a protective effect of morning preference and suggestive evidence for an adverse effect of increased sleep duration on breast cancer risk.
Abstract: Objective To examine whether sleep traits have a causal effect on risk of breast cancer. Design Mendelian randomisation study. Setting UK Biobank prospective cohort study and Breast Cancer Association Consortium (BCAC) case-control genome-wide association study. Participants 156 848 women in the multivariable regression and one sample mendelian randomisation (MR) analysis in UK Biobank (7784 with a breast cancer diagnosis) and 122 977 breast cancer cases and 105 974 controls from BCAC in the two sample MR analysis. Exposures Self reported chronotype (morning or evening preference), insomnia symptoms, and sleep duration in multivariable regression, and genetic variants robustly associated with these sleep traits. Main outcome measure Breast cancer diagnosis. Results In multivariable regression analysis using UK Biobank data on breast cancer incidence, morning preference was inversely associated with breast cancer (hazard ratio 0.95, 95% confidence interval 0.93 to 0.98 per category increase), whereas there was little evidence for an association between sleep duration and insomnia symptoms. Using 341 single nucleotide polymorphisms (SNPs) associated with chronotype, 91 SNPs associated with sleep duration, and 57 SNPs associated with insomnia symptoms, one sample MR analysis in UK Biobank provided some supportive evidence for a protective effect of morning preference on breast cancer risk (0.85, 0.70, 1.03 per category increase) but imprecise estimates for sleep duration and insomnia symptoms. Two sample MR using data from BCAC supported findings for a protective effect of morning preference (inverse variance weighted odds ratio 0.88, 95% confidence interval 0.82 to 0.93 per category increase) and adverse effect of increased sleep duration (1.19, 1.02 to 1.39 per hour increase) on breast cancer risk (both oestrogen receptor positive and oestrogen receptor negative), whereas evidence for insomnia symptoms was inconsistent. Results were largely robust to sensitivity analyses accounting for horizontal pleiotropy. Conclusions Findings showed consistent evidence for a protective effect of morning preference and suggestive evidence for an adverse effect of increased sleep duration on breast cancer risk.

Journal ArticleDOI
TL;DR: Mendelian randomization analyses of the effects of BMI on smoking behaviour in UK Biobank, on cotinine levels and nicotine metabolite ratio in published GWAS and on DNA methylation in the Avon Longitudinal Study of Parents and Children indicate that higher BMI causally influences lifetime smoking.
Abstract: Given clear evidence that smoking lowers weight, it is possible that individuals with higher body mass index (BMI) smoke in order to lose or maintain their weight. We performed Mendelian randomization (MR) analyses of the effects of BMI on smoking behaviour in UK Biobank and the Tobacco and Genetics Consortium genome-wide association study (GWAS), on cotinine levels and nicotine metabolite ratio (NMR) in published GWAS and on DNA methylation in the Avon Longitudinal Study of Parents and Children. Our results indicate that higher BMI causally influences lifetime smoking, smoking initiation, smoking heaviness and also DNA methylation at the aryl-hydrocarbon receptor repressor (AHRR) locus, but we do not see evidence for an effect on smoking cessation. While there is no strong evidence that BMI causally influences cotinine levels, suggestive evidence for a negative causal influence on NMR may explain this. There is a causal effect of BMI on smoking, but the relationship is likely to be complex due to opposing effects on behaviour and metabolism.