scispace - formally typeset
Search or ask a question
Author

George Davey Smith

Other affiliations: Keele University, Western Infirmary, Health Science University  ...read more
Bio: George Davey Smith is an academic researcher from University of Bristol. The author has contributed to research in topics: Population & Mendelian randomization. The author has an hindex of 224, co-authored 2540 publications receiving 248373 citations. Previous affiliations of George Davey Smith include Keele University & Western Infirmary.


Papers
More filters
Journal ArticleDOI
TL;DR: No dose-response relationship and no established mechanism linking stress with breast and prostate cancer are found, and confounding is the parsimonious explanation of these findings.

49 citations

Journal ArticleDOI
TL;DR: To The Editor: The authors would like to raise the following points regarding the article entitled “Autologous Chondrocyte Implantation and Osteochondral Cylinder Transplantation in Cartilage Repair of the Knee Joint” (2003;85:185-92).
Abstract: To The Editor: We would like to raise the following points regarding the article entitled “Autologous Chondrocyte Implantation and Osteochondral Cylinder Transplantation in Cartilage Repair of the Knee Joint” (2003;85:185-92), by Horas et al. A German-language paper by the same authors presents what appears to be the same study comparing osteochondral cylinder transplantation (OCT) with autologous chondrocyte implantation (ACI)1 and concludes that the two methods have equally good results. We would like to know why the paper published in The Journal comes to a different conclusion. We commend the authors for publishing their raw data on the Internet. We note that the mean preoperative Lysholm score was lower in the ACI group. If this is accounted for by analyzing the mean change in score, we find no significant difference between the two treatment groups at … Corresponding author: U. Horas, MD, Department of Trauma Surgery, University of Giessen, Rudolf-Buchheim-Strasse 7, D-35385 Giessen, Germany, E-mail address for R. Schnettler:, reinhard.schnettler{at}chiru.med.uni-giessen.de

49 citations

Journal ArticleDOI
TL;DR: This study suggests that job insecurity may adversely affect coronary health and Cox proportional hazard models showed job insecurity to be associated with a 1.42-fold risk of incident coronary heart disease compared with secure employment.

49 citations

Journal ArticleDOI
TL;DR: The zygosporic state of Mucor pusillus Lindt is described and a Latin diagnosis is given to validate the name Pleurage unicaudata Moreau et Moreau (1955) .
Abstract: Mucor vesiculosus G. Smith, from garden soil, Harrow; M. petrinsularis Naumov var. ovalisporus G. Smith, from infected human ear; Penicillium cylindrosporum G. Smith, aerial contaminant; P. albo-aurantium G. Smith, from garden soil, Harrow; P. radulatum G. Smith, from heathland soil, many localities; P. griseolum G. Smith, from heathland soil, Studland, Dorset; P. raperi G. Smith, from cultivated soil, Bedford, are described as new. The zygosporic state of Mucor pusillus Lindt is described. A Latin diagnosis is given to validate the name Pleurage unicaudata Moreau et Moreau (1955) .

49 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed guidelines to evaluate the cumulative evidence of gene-environment (G × E) interactions in the causation of human cancer, based on the HuGENet and IARC Monographs evaluation processes for genetic and environmental risk factors.
Abstract: We propose guidelines to evaluate the cumulative evidence of gene-environment (G × E) interactions in the causation of human cancer. Our approach has its roots in the HuGENet and IARC Monographs evaluation processes for genetic and environmental risk factors, respectively, and can be applied to common chronic diseases other than cancer. We first review issues of definitions of G × E interactions, discovery and modelling methods for G × E interactions, and issues in systematic reviews of evidence for G × E interactions, since these form the foundation for appraising the credibility of evidence in this contentious field. We then propose guidelines that include four steps: (i) score the strength of the evidence for main effects of the (a) environmental exposure and (b) genetic variant; (ii) establish a prior score category and decide on the pattern of interaction to be expected; (iii) score the strength of the evidence for interaction between the environmental exposure and the genetic variant; and (iv) examine the overall plausibility of interaction by combining the prior score and the strength of the evidence and interpret results. We finally apply the scheme to the interaction between NAT2 polymorphism and tobacco smoking in determining bladder cancer risk.

49 citations


Cited by
More filters
Journal ArticleDOI
04 Sep 2003-BMJ
TL;DR: A new quantity is developed, I 2, which the authors believe gives a better measure of the consistency between trials in a meta-analysis, which is susceptible to the number of trials included in the meta- analysis.
Abstract: Cochrane Reviews have recently started including the quantity I 2 to help readers assess the consistency of the results of studies in meta-analyses. What does this new quantity mean, and why is assessment of heterogeneity so important to clinical practice? Systematic reviews and meta-analyses can provide convincing and reliable evidence relevant to many aspects of medicine and health care.1 Their value is especially clear when the results of the studies they include show clinically important effects of similar magnitude. However, the conclusions are less clear when the included studies have differing results. In an attempt to establish whether studies are consistent, reports of meta-analyses commonly present a statistical test of heterogeneity. The test seeks to determine whether there are genuine differences underlying the results of the studies (heterogeneity), or whether the variation in findings is compatible with chance alone (homogeneity). However, the test is susceptible to the number of trials included in the meta-analysis. We have developed a new quantity, I 2, which we believe gives a better measure of the consistency between trials in a meta-analysis. Assessment of the consistency of effects across studies is an essential part of meta-analysis. Unless we know how consistent the results of studies are, we cannot determine the generalisability of the findings of the meta-analysis. Indeed, several hierarchical systems for grading evidence state that the results of studies must be consistent or homogeneous to obtain the highest grading.2–4 Tests for heterogeneity are commonly used to decide on methods for combining studies and for concluding consistency or inconsistency of findings.5 6 But what does the test achieve in practice, and how should the resulting P values be interpreted? A test for heterogeneity examines the null hypothesis that all studies are evaluating the same effect. The usual test statistic …

45,105 citations

Journal ArticleDOI
13 Sep 1997-BMJ
TL;DR: Funnel plots, plots of the trials' effect estimates against sample size, are skewed and asymmetrical in the presence of publication bias and other biases Funnel plot asymmetry, measured by regression analysis, predicts discordance of results when meta-analyses are compared with single large trials.
Abstract: Objective: Funnel plots (plots of effect estimates against sample size) may be useful to detect bias in meta-analyses that were later contradicted by large trials. We examined whether a simple test of asymmetry of funnel plots predicts discordance of results when meta-analyses are compared to large trials, and we assessed the prevalence of bias in published meta-analyses. Design: Medline search to identify pairs consisting of a meta-analysis and a single large trial (concordance of results was assumed if effects were in the same direction and the meta-analytic estimate was within 30% of the trial); analysis of funnel plots from 37 meta-analyses identified from a hand search of four leading general medicine journals 1993-6 and 38 meta-analyses from the second 1996 issue of the Cochrane Database of Systematic Reviews . Main outcome measure: Degree of funnel plot asymmetry as measured by the intercept from regression of standard normal deviates against precision. Results: In the eight pairs of meta-analysis and large trial that were identified (five from cardiovascular medicine, one from diabetic medicine, one from geriatric medicine, one from perinatal medicine) there were four concordant and four discordant pairs. In all cases discordance was due to meta-analyses showing larger effects. Funnel plot asymmetry was present in three out of four discordant pairs but in none of concordant pairs. In 14 (38%) journal meta-analyses and 5 (13%) Cochrane reviews, funnel plot asymmetry indicated that there was bias. Conclusions: A simple analysis of funnel plots provides a useful test for the likely presence of bias in meta-analyses, but as the capacity to detect bias will be limited when meta-analyses are based on a limited number of small trials the results from such analyses should be treated with considerable caution. Key messages Systematic reviews of randomised trials are the best strategy for appraising evidence; however, the findings of some meta-analyses were later contradicted by large trials Funnel plots, plots of the trials9 effect estimates against sample size, are skewed and asymmetrical in the presence of publication bias and other biases Funnel plot asymmetry, measured by regression analysis, predicts discordance of results when meta-analyses are compared with single large trials Funnel plot asymmetry was found in 38% of meta-analyses published in leading general medicine journals and in 13% of reviews from the Cochrane Database of Systematic Reviews Critical examination of systematic reviews for publication and related biases should be considered a routine procedure

37,989 citations

Journal ArticleDOI
TL;DR: In this review the usual methods applied in systematic reviews and meta-analyses are outlined, and the most common procedures for combining studies with binary outcomes are described, illustrating how they can be done using Stata commands.

31,656 citations

Journal ArticleDOI
TL;DR: An Explanation and Elaboration of the PRISMA Statement is presented and updated guidelines for the reporting of systematic reviews and meta-analyses are presented.
Abstract: Systematic reviews and meta-analyses are essential to summarize evidence relating to efficacy and safety of health care interventions accurately and reliably. The clarity and transparency of these reports, however, is not optimal. Poor reporting of systematic reviews diminishes their value to clinicians, policy makers, and other users. Since the development of the QUOROM (QUality Of Reporting Of Meta-analysis) Statement—a reporting guideline published in 1999—there have been several conceptual, methodological, and practical advances regarding the conduct and reporting of systematic reviews and meta-analyses. Also, reviews of published systematic reviews have found that key information about these studies is often poorly reported. Realizing these issues, an international group that included experienced authors and methodologists developed PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) as an evolution of the original QUOROM guideline for systematic reviews and meta-analyses of evaluations of health care interventions. The PRISMA Statement consists of a 27-item checklist and a four-phase flow diagram. The checklist includes items deemed essential for transparent reporting of a systematic review. In this Explanation and Elaboration document, we explain the meaning and rationale for each checklist item. For each item, we include an example of good reporting and, where possible, references to relevant empirical studies and methodological literature. The PRISMA Statement, this document, and the associated Web site (http://www.prisma-statement.org/) should be helpful resources to improve reporting of systematic reviews and meta-analyses.

25,711 citations

Journal ArticleDOI
18 Oct 2011-BMJ
TL;DR: The Cochrane Collaboration’s tool for assessing risk of bias aims to make the process clearer and more accurate.
Abstract: Flaws in the design, conduct, analysis, and reporting of randomised trials can cause the effect of an intervention to be underestimated or overestimated. The Cochrane Collaboration’s tool for assessing risk of bias aims to make the process clearer and more accurate

22,227 citations