scispace - formally typeset
Search or ask a question
Author

George Davey Smith

Other affiliations: Keele University, Western Infirmary, Health Science University  ...read more
Bio: George Davey Smith is an academic researcher from University of Bristol. The author has contributed to research in topics: Population & Mendelian randomization. The author has an hindex of 224, co-authored 2540 publications receiving 248373 citations. Previous affiliations of George Davey Smith include Keele University & Western Infirmary.


Papers
More filters
Journal ArticleDOI
TL;DR: A policy of positive discrimination in favour of educational priority areas (EPAs) was one of the key proposals in the Plowden Report as discussed by the authors, one which received immediate and widespread support. Within a few years the basis for a national programme had been laid, with initiatives at central and local government level, an action research programme and an active lobby, though resources were always limited.
Abstract: A policy of positive discrimination in favour of Educational Priority Areas (EPAs) was one of the key proposals in the Plowden Report—one which received immediate and widespread support. Within a few years the basis for a national programme had been laid, with initiatives at central and local government level, an action‐research programme and an active lobby, though resources were always limited. However, far from taking off in the 1970s the EPA programme had faltered and all but disappeared by the end of the decade. While there were many reasons, central was the failure of the original EPA conception to respond and adapt to changing values, research evidence and the worsening conditions in the inner city. EPA seemed increasingly marginal. However, in recent years there has been a revival of interest in the role of education in the inner city. An EPA approach could give an overall coherence and framework to these initiatives. However, the original conception would now have to be substantially ame...

48 citations

Journal ArticleDOI
TL;DR: The relative importance of the selection and causation hypotheses of social inequalities in mortality, and upper and lower bounds for the gender-specific mobility effects are investigated, are investigated and the resulting effect of social mobility on the mortality divide may be rather small.

48 citations

Journal Article
TL;DR: In this paper, the phase transformations during aging in a variety of model maraging steels were investigated using Atom-probe field-ion microscopy (APFIM) techniques.
Abstract: This article describes studies of phase transformations during aging in a variety of model maraging steels. Atom-probe field-ion microscopy (APFIM) was the main research technique employed. Thermochemical calculation was also used during the course of the work. The composition and morphology of precipitates were compared in several maraging systems aged at different temperatures for different times to investigate the aging sequence. The APFIM results are compared with studies by other workers using different experimental techniques. In FeNi(-Co)-Mo model alloys, ω phase and Fe 7 Mo 6 μ phase have been found to contribute to age hardening at different stages of aging; no evidence was found for the existence of Mo-rich clusters in the as-quenched Fe-Ni-Co-Mo alloy

48 citations

Journal ArticleDOI
TL;DR: In men most support for an effect of childhood socioeconomic position was found for stomach cancer, lung cancer, coronary heart disease, “other violent death”, and all causes of death, and in women similar effects were found for lung cancer.
Abstract: Objective: To assess the impact of childhood and adulthood socioeconomic position (SEP) across 20 causes of death in a large population-wide sample of Norwegian men and women. Methods: Census data on parental occupational class from 1960 and data from the tax register on household income in 1990 were linked to the death register for 1990–2001, and 20 causes of death were studied. Relative indices of inequalities were computed. Norwegians in the age group 0–20 years in 1960 and still alive in 1990 were followed for deaths in 1990 to 2001. This follow up involved 795 324 individuals (78%) and 20 887 deaths. Main results: In men most support for an effect of childhood socioeconomic position was found for stomach cancer, lung cancer, coronary heart disease, “other violent death”, and all causes of death. In women similar effects were found for lung cancer, cervical cancer, coronary heart disease, chronic obstructive pulmonary disease, and all causes of death. Conclusions: The effect of childhood socioeconomic position relative to adulthood varies by cause of death. Although there are some exceptions, the patterns in men and women are generally similar.

48 citations


Cited by
More filters
Journal ArticleDOI
04 Sep 2003-BMJ
TL;DR: A new quantity is developed, I 2, which the authors believe gives a better measure of the consistency between trials in a meta-analysis, which is susceptible to the number of trials included in the meta- analysis.
Abstract: Cochrane Reviews have recently started including the quantity I 2 to help readers assess the consistency of the results of studies in meta-analyses. What does this new quantity mean, and why is assessment of heterogeneity so important to clinical practice? Systematic reviews and meta-analyses can provide convincing and reliable evidence relevant to many aspects of medicine and health care.1 Their value is especially clear when the results of the studies they include show clinically important effects of similar magnitude. However, the conclusions are less clear when the included studies have differing results. In an attempt to establish whether studies are consistent, reports of meta-analyses commonly present a statistical test of heterogeneity. The test seeks to determine whether there are genuine differences underlying the results of the studies (heterogeneity), or whether the variation in findings is compatible with chance alone (homogeneity). However, the test is susceptible to the number of trials included in the meta-analysis. We have developed a new quantity, I 2, which we believe gives a better measure of the consistency between trials in a meta-analysis. Assessment of the consistency of effects across studies is an essential part of meta-analysis. Unless we know how consistent the results of studies are, we cannot determine the generalisability of the findings of the meta-analysis. Indeed, several hierarchical systems for grading evidence state that the results of studies must be consistent or homogeneous to obtain the highest grading.2–4 Tests for heterogeneity are commonly used to decide on methods for combining studies and for concluding consistency or inconsistency of findings.5 6 But what does the test achieve in practice, and how should the resulting P values be interpreted? A test for heterogeneity examines the null hypothesis that all studies are evaluating the same effect. The usual test statistic …

45,105 citations

Journal ArticleDOI
13 Sep 1997-BMJ
TL;DR: Funnel plots, plots of the trials' effect estimates against sample size, are skewed and asymmetrical in the presence of publication bias and other biases Funnel plot asymmetry, measured by regression analysis, predicts discordance of results when meta-analyses are compared with single large trials.
Abstract: Objective: Funnel plots (plots of effect estimates against sample size) may be useful to detect bias in meta-analyses that were later contradicted by large trials. We examined whether a simple test of asymmetry of funnel plots predicts discordance of results when meta-analyses are compared to large trials, and we assessed the prevalence of bias in published meta-analyses. Design: Medline search to identify pairs consisting of a meta-analysis and a single large trial (concordance of results was assumed if effects were in the same direction and the meta-analytic estimate was within 30% of the trial); analysis of funnel plots from 37 meta-analyses identified from a hand search of four leading general medicine journals 1993-6 and 38 meta-analyses from the second 1996 issue of the Cochrane Database of Systematic Reviews . Main outcome measure: Degree of funnel plot asymmetry as measured by the intercept from regression of standard normal deviates against precision. Results: In the eight pairs of meta-analysis and large trial that were identified (five from cardiovascular medicine, one from diabetic medicine, one from geriatric medicine, one from perinatal medicine) there were four concordant and four discordant pairs. In all cases discordance was due to meta-analyses showing larger effects. Funnel plot asymmetry was present in three out of four discordant pairs but in none of concordant pairs. In 14 (38%) journal meta-analyses and 5 (13%) Cochrane reviews, funnel plot asymmetry indicated that there was bias. Conclusions: A simple analysis of funnel plots provides a useful test for the likely presence of bias in meta-analyses, but as the capacity to detect bias will be limited when meta-analyses are based on a limited number of small trials the results from such analyses should be treated with considerable caution. Key messages Systematic reviews of randomised trials are the best strategy for appraising evidence; however, the findings of some meta-analyses were later contradicted by large trials Funnel plots, plots of the trials9 effect estimates against sample size, are skewed and asymmetrical in the presence of publication bias and other biases Funnel plot asymmetry, measured by regression analysis, predicts discordance of results when meta-analyses are compared with single large trials Funnel plot asymmetry was found in 38% of meta-analyses published in leading general medicine journals and in 13% of reviews from the Cochrane Database of Systematic Reviews Critical examination of systematic reviews for publication and related biases should be considered a routine procedure

37,989 citations

Journal ArticleDOI
TL;DR: In this review the usual methods applied in systematic reviews and meta-analyses are outlined, and the most common procedures for combining studies with binary outcomes are described, illustrating how they can be done using Stata commands.

31,656 citations

Journal ArticleDOI
TL;DR: An Explanation and Elaboration of the PRISMA Statement is presented and updated guidelines for the reporting of systematic reviews and meta-analyses are presented.
Abstract: Systematic reviews and meta-analyses are essential to summarize evidence relating to efficacy and safety of health care interventions accurately and reliably. The clarity and transparency of these reports, however, is not optimal. Poor reporting of systematic reviews diminishes their value to clinicians, policy makers, and other users. Since the development of the QUOROM (QUality Of Reporting Of Meta-analysis) Statement—a reporting guideline published in 1999—there have been several conceptual, methodological, and practical advances regarding the conduct and reporting of systematic reviews and meta-analyses. Also, reviews of published systematic reviews have found that key information about these studies is often poorly reported. Realizing these issues, an international group that included experienced authors and methodologists developed PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) as an evolution of the original QUOROM guideline for systematic reviews and meta-analyses of evaluations of health care interventions. The PRISMA Statement consists of a 27-item checklist and a four-phase flow diagram. The checklist includes items deemed essential for transparent reporting of a systematic review. In this Explanation and Elaboration document, we explain the meaning and rationale for each checklist item. For each item, we include an example of good reporting and, where possible, references to relevant empirical studies and methodological literature. The PRISMA Statement, this document, and the associated Web site (http://www.prisma-statement.org/) should be helpful resources to improve reporting of systematic reviews and meta-analyses.

25,711 citations

Journal ArticleDOI
18 Oct 2011-BMJ
TL;DR: The Cochrane Collaboration’s tool for assessing risk of bias aims to make the process clearer and more accurate.
Abstract: Flaws in the design, conduct, analysis, and reporting of randomised trials can cause the effect of an intervention to be underestimated or overestimated. The Cochrane Collaboration’s tool for assessing risk of bias aims to make the process clearer and more accurate

22,227 citations