scispace - formally typeset
Search or ask a question
Author

George Davey Smith

Other affiliations: Keele University, Western Infirmary, Health Science University  ...read more
Bio: George Davey Smith is an academic researcher from University of Bristol. The author has contributed to research in topics: Population & Mendelian randomization. The author has an hindex of 224, co-authored 2540 publications receiving 248373 citations. Previous affiliations of George Davey Smith include Keele University & Western Infirmary.


Papers
More filters
Journal ArticleDOI
TL;DR: There is a complex interaction of factors that may affect the patency of an individual AVF, and these need to be carefully considered when selecting surgical site or technique, adjuvant treatments, and follow-up protocols for AVFs.

204 citations

Journal ArticleDOI
TL;DR: In this article, the influences of childhood social background, childhood cognitive ability, and education on intergenerational social mobility and social status attainment at mid-life were examined for men born in 1921 and who participated in the Scottish Mental Survey of 1932 and thereafter in the Midspan Collaborative study in Scotland between 1970 and 1973.

203 citations

Journal ArticleDOI
27 Sep 2010-BMJ
TL;DR: The prevalence of tobacco use in men and obesity in women was striking and the need for careful monitoring and control of non-communicable disease risk factors in rural areas of India is highlighted.
Abstract: Objectives To investigate the sociodemographic patterning of non-communicable disease risk factors in rural India. Design Cross sectional study. Setting About 1600 villages from 18 states in India. Most were from four large states due to a convenience sampling strategy. Participants 1983 (31% women) people aged 20–69 years (49% response rate). Main outcome measures Prevalence of tobacco use, alcohol use, low fruit and vegetable intake, low physical activity, obesity, central adiposity, hypertension, dyslipidaemia, diabetes, and underweight. Results Prevalence of most risk factors increased with age. Tobacco and alcohol use, low intake of fruit and vegetables, and underweight were more common in lower socioeconomic positions; whereas obesity, dyslipidaemia, and diabetes (men only) and hypertension (women only) were more prevalent in higher socioeconomic positions. For example, 37% (95% CI 30% to 44%) of men smoked tobacco in the lowest socioeconomic group compared with 15% (12% to 17%) in the highest, while 35% (30% to 40%) of women in the highest socioeconomic group were obese compared with 13% (7% to 19%) in the lowest. The age standardised prevalence of some risk factors was: tobacco use (40% (37% to 42%) men, 4% (3% to 6%) women); low fruit and vegetable intake (69% (66% to 71%) men, 75% (71% to 78%) women); obesity (19% (17% to 21%) men, 28% (24% to 31%) women); dyslipidaemia (33% (31% to 36%) men, 35% (31% to 38%) women); hypertension (20% (18% to 22%) men, 22% (19% to 25%) women); diabetes (6% (5% to 7%) men, 5% (4% to 7%) women); and underweight (21% (19% to 23%) men, 18% (15% to 21%) women). Risk factors were generally more prevalent in south Indians compared with north Indians. For example, the prevalence of dyslipidaemia was 21% (17% to 33%) in north Indian men compared with 33% (29% to 38%) in south Indian men, while the prevalence of obesity was 13% (9% to 17%) in north Indian women compared with 24% (19% to 30%) in south Indian women. Conclusions The prevalence of most risk factors was generally high across a range of sociodemographic groups in this sample of rural villagers in India; in particular, the prevalence of tobacco use in men and obesity in women was striking. However, given the limitations of the study (convenience sampling design and low response rate), cautious interpretation of the results is warranted. These data highlight the need for careful monitoring and control of non-communicable disease risk factors in rural areas of India.

202 citations

Journal ArticleDOI
TL;DR: Evidence from a large and small trial showed that a low sodium diet helps in maintenance of lower blood pressure following withdrawal of antihypertensives, and targeting of comprehensive dietary and behavioural programmes in patients with elevated blood pressure requiring drug treatment would be justified.
Abstract: Restricting sodium intake in hypertensive patients over short periods of time reduces blood pressure. Long term effects (on mortality, morbidity or blood pressure) of advice to reduce salt in patients with elevated or normal blood pressure are unclear. Objectives To assess in adults the long term effects (mortality, cardiovascular events, blood pressure, quality of life, weight, urinary sodium excretion, other nutrients and use of anti-hypertensive medications) of advice to restrict dietary sodium using all relevant randomised controlled trials. Inclusion decisions were independently duplicated and based on the following criteria: 1) randomisation was adequate; 2) there was a usual or control diet group; 3) the intervention aimed to reduce sodium intake; 4) the intervention was not multifactorial; 5) the participants were not children, acutely ill, pregnant or institutionalised; 6) follow-up was at least 26 weeks; 7) data on any of the outcomes of interest were available. Three trials in normotensives (n=2326), five in untreated hypertensives (n=387) and three in treated hypertensives (n=801) were included, with follow up from six months to seven years. The large, high quality (and therefore most informative) studies used intensive behavioural interventions. Deaths and cardiovascular events were inconsistently defined and reported; only 17 deaths equally distributed between intervention and control groups occurred. Systolic and diastolic blood pressures were reduced at 13 to 60 months in those given low sodium advice as compared with controls (systolic by 1.1 mm Hg, 95% CI 1.8 to 0.4, diastolic by 0.6 mm hg, 95% CI 1.5 to -0.3), as was urinary 24 hour sodium excretion (by 35.5 mmol/ 24 hours, 95% CI 47.2 to 23.9). Degree of reduction in sodium intake and change in blood pressure were not related. People on anti-hypertensive medications were able to stop their medication more often on a reduced sodium diet as compared with controls, while maintaining similar blood pressure control.

202 citations


Cited by
More filters
Journal ArticleDOI
04 Sep 2003-BMJ
TL;DR: A new quantity is developed, I 2, which the authors believe gives a better measure of the consistency between trials in a meta-analysis, which is susceptible to the number of trials included in the meta- analysis.
Abstract: Cochrane Reviews have recently started including the quantity I 2 to help readers assess the consistency of the results of studies in meta-analyses. What does this new quantity mean, and why is assessment of heterogeneity so important to clinical practice? Systematic reviews and meta-analyses can provide convincing and reliable evidence relevant to many aspects of medicine and health care.1 Their value is especially clear when the results of the studies they include show clinically important effects of similar magnitude. However, the conclusions are less clear when the included studies have differing results. In an attempt to establish whether studies are consistent, reports of meta-analyses commonly present a statistical test of heterogeneity. The test seeks to determine whether there are genuine differences underlying the results of the studies (heterogeneity), or whether the variation in findings is compatible with chance alone (homogeneity). However, the test is susceptible to the number of trials included in the meta-analysis. We have developed a new quantity, I 2, which we believe gives a better measure of the consistency between trials in a meta-analysis. Assessment of the consistency of effects across studies is an essential part of meta-analysis. Unless we know how consistent the results of studies are, we cannot determine the generalisability of the findings of the meta-analysis. Indeed, several hierarchical systems for grading evidence state that the results of studies must be consistent or homogeneous to obtain the highest grading.2–4 Tests for heterogeneity are commonly used to decide on methods for combining studies and for concluding consistency or inconsistency of findings.5 6 But what does the test achieve in practice, and how should the resulting P values be interpreted? A test for heterogeneity examines the null hypothesis that all studies are evaluating the same effect. The usual test statistic …

45,105 citations

Journal ArticleDOI
13 Sep 1997-BMJ
TL;DR: Funnel plots, plots of the trials' effect estimates against sample size, are skewed and asymmetrical in the presence of publication bias and other biases Funnel plot asymmetry, measured by regression analysis, predicts discordance of results when meta-analyses are compared with single large trials.
Abstract: Objective: Funnel plots (plots of effect estimates against sample size) may be useful to detect bias in meta-analyses that were later contradicted by large trials. We examined whether a simple test of asymmetry of funnel plots predicts discordance of results when meta-analyses are compared to large trials, and we assessed the prevalence of bias in published meta-analyses. Design: Medline search to identify pairs consisting of a meta-analysis and a single large trial (concordance of results was assumed if effects were in the same direction and the meta-analytic estimate was within 30% of the trial); analysis of funnel plots from 37 meta-analyses identified from a hand search of four leading general medicine journals 1993-6 and 38 meta-analyses from the second 1996 issue of the Cochrane Database of Systematic Reviews . Main outcome measure: Degree of funnel plot asymmetry as measured by the intercept from regression of standard normal deviates against precision. Results: In the eight pairs of meta-analysis and large trial that were identified (five from cardiovascular medicine, one from diabetic medicine, one from geriatric medicine, one from perinatal medicine) there were four concordant and four discordant pairs. In all cases discordance was due to meta-analyses showing larger effects. Funnel plot asymmetry was present in three out of four discordant pairs but in none of concordant pairs. In 14 (38%) journal meta-analyses and 5 (13%) Cochrane reviews, funnel plot asymmetry indicated that there was bias. Conclusions: A simple analysis of funnel plots provides a useful test for the likely presence of bias in meta-analyses, but as the capacity to detect bias will be limited when meta-analyses are based on a limited number of small trials the results from such analyses should be treated with considerable caution. Key messages Systematic reviews of randomised trials are the best strategy for appraising evidence; however, the findings of some meta-analyses were later contradicted by large trials Funnel plots, plots of the trials9 effect estimates against sample size, are skewed and asymmetrical in the presence of publication bias and other biases Funnel plot asymmetry, measured by regression analysis, predicts discordance of results when meta-analyses are compared with single large trials Funnel plot asymmetry was found in 38% of meta-analyses published in leading general medicine journals and in 13% of reviews from the Cochrane Database of Systematic Reviews Critical examination of systematic reviews for publication and related biases should be considered a routine procedure

37,989 citations

Journal ArticleDOI
TL;DR: In this review the usual methods applied in systematic reviews and meta-analyses are outlined, and the most common procedures for combining studies with binary outcomes are described, illustrating how they can be done using Stata commands.

31,656 citations

Journal ArticleDOI
TL;DR: An Explanation and Elaboration of the PRISMA Statement is presented and updated guidelines for the reporting of systematic reviews and meta-analyses are presented.
Abstract: Systematic reviews and meta-analyses are essential to summarize evidence relating to efficacy and safety of health care interventions accurately and reliably. The clarity and transparency of these reports, however, is not optimal. Poor reporting of systematic reviews diminishes their value to clinicians, policy makers, and other users. Since the development of the QUOROM (QUality Of Reporting Of Meta-analysis) Statement—a reporting guideline published in 1999—there have been several conceptual, methodological, and practical advances regarding the conduct and reporting of systematic reviews and meta-analyses. Also, reviews of published systematic reviews have found that key information about these studies is often poorly reported. Realizing these issues, an international group that included experienced authors and methodologists developed PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) as an evolution of the original QUOROM guideline for systematic reviews and meta-analyses of evaluations of health care interventions. The PRISMA Statement consists of a 27-item checklist and a four-phase flow diagram. The checklist includes items deemed essential for transparent reporting of a systematic review. In this Explanation and Elaboration document, we explain the meaning and rationale for each checklist item. For each item, we include an example of good reporting and, where possible, references to relevant empirical studies and methodological literature. The PRISMA Statement, this document, and the associated Web site (http://www.prisma-statement.org/) should be helpful resources to improve reporting of systematic reviews and meta-analyses.

25,711 citations

Journal ArticleDOI
18 Oct 2011-BMJ
TL;DR: The Cochrane Collaboration’s tool for assessing risk of bias aims to make the process clearer and more accurate.
Abstract: Flaws in the design, conduct, analysis, and reporting of randomised trials can cause the effect of an intervention to be underestimated or overestimated. The Cochrane Collaboration’s tool for assessing risk of bias aims to make the process clearer and more accurate

22,227 citations