scispace - formally typeset
Search or ask a question
Author

George Davey Smith

Other affiliations: Keele University, Western Infirmary, Health Science University  ...read more
Bio: George Davey Smith is an academic researcher from University of Bristol. The author has contributed to research in topics: Population & Mendelian randomization. The author has an hindex of 224, co-authored 2540 publications receiving 248373 citations. Previous affiliations of George Davey Smith include Keele University & Western Infirmary.


Papers
More filters
Journal ArticleDOI
TL;DR: It is expected that in future, studies in this area will permit increased precision in the assessment of risk, thereby permitting better consideration by both surgeon and patient of the options available regarding surgical and non-surgical therapy.
Abstract: In the past two to three decades, advancing knowledge in the areas of physiology, pharmacology and scientific technology have allowed diversification from the purely technical aspects of administration of anaesthesia towards more accurate assessment of outcome for the individual in terms of both anaesthetic-induced morbidity and mortality. In addition, elucidation of the aetiology of the morbidity and mortality produced by anaesthesia, as opposed to that from surgery or concomitant medical or surgical disease processes, is assuming increased importance as a result of the expansion in medical litigation, where anaesthetists find themselves amongst the higher risk specialties in medicine. The morbidity produced by anaesthesia is relatively easy to define for specific populations, but the prediction of risk in an isolated individual remains elusive. For example, there are many studies indicating the incidence of postoperative myocardial infarction following surgical procedures in defined groups; but for the individual patient, more sophisticated risk assessments have so far failed to predict more accurately than the well-established ASA grading system. Nonetheless, it is expected that in future, studies in this area will permit increased precision in the assessment of risk, thereby permitting better consideration by both surgeon and patient of the options available regarding surgical and non-surgical therapy. Increasing emphasis on the safer administration of anaesthesia has been greatly aided by the use of the critical incident technique. By assessing near-misses in addition to existing morbidity and mortality, the technique increases the size and extent of the database, and by removal of the reticence inherent in an anaesthetist's confession of his mistakes, it increases the reporting of potential mishaps. Amongst the useful findings to have emerged from such studies is the previously unforeseen and unsuspected observation that the most dangerous period of anaesthesia is not during induction and recovery, but during the maintenance period. However, perhaps one of the more valuable aspects of this type of methodology is its potential use in quality control and audit within departments. There are undoubted problems and universally acknowledged difficulties in epidemiological research into anaesthetic mortality. Comparison of data between studies is rendered difficult owing to variations in procedure, including its prospective or retrospective nature, the definition of death, the perioperative time period studied, and the patient and hospital populations encompassed.(ABSTRACT TRUNCATED AT 400 WORDS)

125 citations

Journal ArticleDOI
TL;DR: This analysis shows that a large sample size allows the discovery of secondary effects of human variations on gene expression that can be used to construct short directed gene regulatory networks.
Abstract: Gene expression is a heritable cellular phenotype that defines the function of a cell and can lead to diseases in case of misregulation. In order to detect genetic variations affecting gene expression, we performed association analysis of single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) with gene expression measured in 869 lymphoblastoid cell lines of the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort in cis and in trans. We discovered that 3,534 genes (false discovery rate (FDR) = 5%) are affected by an expression quantitative trait locus (eQTL) in cis and 48 genes are affected in trans. We observed that CNVs are more likely to be eQTLs than SNPs. In addition, we found that variants associated to complex traits and diseases are enriched for trans-eQTLs and that trans-eQTLs are enriched for cis-eQTLs. As a variant affecting both a gene in cis and in trans suggests that the cis gene is functionally linked to the trans gene expression, we looked specifically for trans effects of cis-eQTLs. We discovered that 26 cis-eQTLs are associated to 92 genes in trans with the cis-eQTLs of the transcriptions factors BATF3 and HMX2 affecting the most genes. We then explored if the variation of the level of expression of the cis genes were causally affecting the level of expression of the trans genes and discovered several causal relationships between variation in the level of expression of the cis gene and variation of the level of expression of the trans gene. This analysis shows that a large sample size allows the discovery of secondary effects of human variations on gene expression that can be used to construct short directed gene regulatory networks.

125 citations

Journal ArticleDOI
TL;DR: Robust evidence is provided that IR causally affects each individual BCAA and inflammation, which implies that BCAA metabolism lies on a causal pathway from adiposity and IR to type 2 diabetes.
Abstract: OBJECTIVE Insulin resistance has deleterious effects on cardiometabolic disease. We used Mendelian randomization analyses to clarify the causal relationships of insulin resistance (IR) on circulating blood-based metabolites to shed light on potential mediators of the IR to cardiometabolic disease relationship. RESEARCH DESIGN AND METHODS We used 53 single nucleotide polymorphisms associated with IR from a recent genome-wide association study (GWAS) to explore their effects on circulating lipids and metabolites. We used published summary-level data from two GWASs of European individuals; data on the exposure (IR) were obtained from meta-GWASs of 188,577 individuals, and data on the outcomes (58 metabolic measures assessed by nuclear magnetic resonance) were taken from a GWAS of 24,925 individuals. RESULTS One-SD genetically elevated IR (equivalent to 55% higher geometric mean of fasting insulin, 0.89 mmol/L higher triglycerides, and 0.46 mmol/L lower HDL cholesterol) was associated with higher concentrations of all branched-chain amino acids (BCAAs)—isoleucine (0.56 SD; 95% CI 0.43, 0.70), leucine (0.42 SD; 95% CI 0.28, 0.55), and valine (0.26 SD; 95% CI 0.12, 0.39)—as well as with higher glycoprotein acetyls (an inflammation marker) (0.47 SD; 95% CI 0.32, 0.62) ( P CONCLUSIONS We provide robust evidence that IR causally affects each individual BCAA and inflammation. Taken together with existing studies, this implies that BCAA metabolism lies on a causal pathway from adiposity and IR to type 2 diabetes.

125 citations

Journal ArticleDOI
TL;DR: Results suggest that persons at higher genetic risk for schizophrenia are likely to be underrepresented in cohort studies, which will underestimate risk of this and related psychiatric, cognitive, and behavioral phenotypes in the population.
Abstract: Progress has recently been made in understanding the genetic basis of schizophrenia and other psychiatric disorders. Longitudinal studies are complicated by participant dropout, which could be related to the presence of psychiatric problems and associated genetic risk. We tested whether common genetic variants implicated in schizophrenia were associated with study nonparticipation among 7,867 children and 7,850 mothers from the Avon Longitudinal Study of Parents and Children (ALSPAC; 1991–2007), a longitudinal population cohort study. Higher polygenic risk scores for schizophrenia were consistently associated with noncompletion of questionnaires by study mothers and children and nonattendance at data collection throughout childhood and adolescence (ages 1–15 years). These associations persisted after adjustment for other potential correlates of nonparticipation. Results suggest that persons at higher genetic risk for schizophrenia are likely to be underrepresented in cohort studies, which will underestimate risk of this and related psychiatric, cognitive, and behavioral phenotypes in the population. Statistical power to detect associations with these phenotypes will be reduced, while analyses of schizophrenia-related phenotypes as outcomes may be biased by the nonrandom missingness of these phenotypes, even if multiple imputation is used. Similarly, in complete-case analyses, collider bias may affect associations between genetic risk and other factors associated with missingness.

124 citations


Cited by
More filters
Journal ArticleDOI
04 Sep 2003-BMJ
TL;DR: A new quantity is developed, I 2, which the authors believe gives a better measure of the consistency between trials in a meta-analysis, which is susceptible to the number of trials included in the meta- analysis.
Abstract: Cochrane Reviews have recently started including the quantity I 2 to help readers assess the consistency of the results of studies in meta-analyses. What does this new quantity mean, and why is assessment of heterogeneity so important to clinical practice? Systematic reviews and meta-analyses can provide convincing and reliable evidence relevant to many aspects of medicine and health care.1 Their value is especially clear when the results of the studies they include show clinically important effects of similar magnitude. However, the conclusions are less clear when the included studies have differing results. In an attempt to establish whether studies are consistent, reports of meta-analyses commonly present a statistical test of heterogeneity. The test seeks to determine whether there are genuine differences underlying the results of the studies (heterogeneity), or whether the variation in findings is compatible with chance alone (homogeneity). However, the test is susceptible to the number of trials included in the meta-analysis. We have developed a new quantity, I 2, which we believe gives a better measure of the consistency between trials in a meta-analysis. Assessment of the consistency of effects across studies is an essential part of meta-analysis. Unless we know how consistent the results of studies are, we cannot determine the generalisability of the findings of the meta-analysis. Indeed, several hierarchical systems for grading evidence state that the results of studies must be consistent or homogeneous to obtain the highest grading.2–4 Tests for heterogeneity are commonly used to decide on methods for combining studies and for concluding consistency or inconsistency of findings.5 6 But what does the test achieve in practice, and how should the resulting P values be interpreted? A test for heterogeneity examines the null hypothesis that all studies are evaluating the same effect. The usual test statistic …

45,105 citations

Journal ArticleDOI
13 Sep 1997-BMJ
TL;DR: Funnel plots, plots of the trials' effect estimates against sample size, are skewed and asymmetrical in the presence of publication bias and other biases Funnel plot asymmetry, measured by regression analysis, predicts discordance of results when meta-analyses are compared with single large trials.
Abstract: Objective: Funnel plots (plots of effect estimates against sample size) may be useful to detect bias in meta-analyses that were later contradicted by large trials. We examined whether a simple test of asymmetry of funnel plots predicts discordance of results when meta-analyses are compared to large trials, and we assessed the prevalence of bias in published meta-analyses. Design: Medline search to identify pairs consisting of a meta-analysis and a single large trial (concordance of results was assumed if effects were in the same direction and the meta-analytic estimate was within 30% of the trial); analysis of funnel plots from 37 meta-analyses identified from a hand search of four leading general medicine journals 1993-6 and 38 meta-analyses from the second 1996 issue of the Cochrane Database of Systematic Reviews . Main outcome measure: Degree of funnel plot asymmetry as measured by the intercept from regression of standard normal deviates against precision. Results: In the eight pairs of meta-analysis and large trial that were identified (five from cardiovascular medicine, one from diabetic medicine, one from geriatric medicine, one from perinatal medicine) there were four concordant and four discordant pairs. In all cases discordance was due to meta-analyses showing larger effects. Funnel plot asymmetry was present in three out of four discordant pairs but in none of concordant pairs. In 14 (38%) journal meta-analyses and 5 (13%) Cochrane reviews, funnel plot asymmetry indicated that there was bias. Conclusions: A simple analysis of funnel plots provides a useful test for the likely presence of bias in meta-analyses, but as the capacity to detect bias will be limited when meta-analyses are based on a limited number of small trials the results from such analyses should be treated with considerable caution. Key messages Systematic reviews of randomised trials are the best strategy for appraising evidence; however, the findings of some meta-analyses were later contradicted by large trials Funnel plots, plots of the trials9 effect estimates against sample size, are skewed and asymmetrical in the presence of publication bias and other biases Funnel plot asymmetry, measured by regression analysis, predicts discordance of results when meta-analyses are compared with single large trials Funnel plot asymmetry was found in 38% of meta-analyses published in leading general medicine journals and in 13% of reviews from the Cochrane Database of Systematic Reviews Critical examination of systematic reviews for publication and related biases should be considered a routine procedure

37,989 citations

Journal ArticleDOI
TL;DR: In this review the usual methods applied in systematic reviews and meta-analyses are outlined, and the most common procedures for combining studies with binary outcomes are described, illustrating how they can be done using Stata commands.

31,656 citations

Journal ArticleDOI
TL;DR: An Explanation and Elaboration of the PRISMA Statement is presented and updated guidelines for the reporting of systematic reviews and meta-analyses are presented.
Abstract: Systematic reviews and meta-analyses are essential to summarize evidence relating to efficacy and safety of health care interventions accurately and reliably. The clarity and transparency of these reports, however, is not optimal. Poor reporting of systematic reviews diminishes their value to clinicians, policy makers, and other users. Since the development of the QUOROM (QUality Of Reporting Of Meta-analysis) Statement—a reporting guideline published in 1999—there have been several conceptual, methodological, and practical advances regarding the conduct and reporting of systematic reviews and meta-analyses. Also, reviews of published systematic reviews have found that key information about these studies is often poorly reported. Realizing these issues, an international group that included experienced authors and methodologists developed PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) as an evolution of the original QUOROM guideline for systematic reviews and meta-analyses of evaluations of health care interventions. The PRISMA Statement consists of a 27-item checklist and a four-phase flow diagram. The checklist includes items deemed essential for transparent reporting of a systematic review. In this Explanation and Elaboration document, we explain the meaning and rationale for each checklist item. For each item, we include an example of good reporting and, where possible, references to relevant empirical studies and methodological literature. The PRISMA Statement, this document, and the associated Web site (http://www.prisma-statement.org/) should be helpful resources to improve reporting of systematic reviews and meta-analyses.

25,711 citations

Journal ArticleDOI
18 Oct 2011-BMJ
TL;DR: The Cochrane Collaboration’s tool for assessing risk of bias aims to make the process clearer and more accurate.
Abstract: Flaws in the design, conduct, analysis, and reporting of randomised trials can cause the effect of an intervention to be underestimated or overestimated. The Cochrane Collaboration’s tool for assessing risk of bias aims to make the process clearer and more accurate

22,227 citations