scispace - formally typeset
Search or ask a question
Author

George E. Claypool

Bio: George E. Claypool is an academic researcher from United States Geological Survey. The author has contributed to research in topics: Clathrate hydrate & Source rock. The author has an hindex of 25, co-authored 58 publications receiving 4825 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a model involving symmetrical fluxes is introduced to take advantage of the oxygen data, and the measured δ34S and δ18O correspond to variations in these isotopes in sulfate of the world ocean surface.

1,759 citations

Journal ArticleDOI
TL;DR: The most important mechanism of methane generation in marine sediments is the reduction of CO2 by hydrogen (electrons) produced by the anaerobic oxidation of organic matter.
Abstract: Biogenic gas is generated at low temperatures by decomposition of organic matter by anaerobic microorganisms. More than 20% of the world's discovered gas reserves are of biogenic origin. A higher percentage of gases of predominantly biogenic origin will be discovered in the future. Biogenic gas is an important target for exploration because it occurs in geologically predictable circumstances and in areally widespread, large quantities at shallow depths. In rapidly accumulating marine sediments, a succession of microbial ecosystems leads to the generation of biogenic gas. After oxygen is consumed by aerobic respiration, sulfate reduction becomes the dominant form of respiration. Methane generation and accumulation become dominant only after sulfate in sediment pore water is depleted. The most important mechanism of methane generation in marine sediments is the reduction of CO2 by hydrogen (electrons) produced by the anaerobic oxidation of organic matter. CO2 is the product of either metabolic decarboxylation or chemical decarboxylation at slightly higher temperatures. The factors that control the level of methane production after sediment burial are anoxic environment, sulfate-deficient environment, low temperatu e, availability of organic matter, and sufficient space. The timing of these factors is such that most biogenic gas is generated prior to burial depths of 1,000 m. In marine sediments, most of the biogenic gas formed can be retained in solution in the interstitial (pore) waters because of higher methane solubility at the higher hydrostatic pressures due to the weight of the overlying water column. Under certain conditions of high pressures and (or) low temperatures, biogenic methane combines with water to form gas hydrates. Biogenic gas usually can be distinguished from thermogenic gas by chemical and isotopic analyses. The hydrocarbon fraction of biogenic gas consists predominantly of methane. The presence of as much as 2% of heavier hydrocarbons can be attributed to admixture of minor thermogenic gas due to low-temperature degradation of organic matter. The amounts of hydrocarbon components other than methane generally are proportional to temperature, age, and organic-matter content of the sediments. Biogenic methane is enriched in the light isotope 12C (^dgr13C1 lighter than -55 ppt) owing to kinetic isotope fractionation by methanogens. The variations in isotopic composition of biogenic methane are controlled primarily by ^dgr13C of the original CO2 substrate, which reflects the net isotopic effect of both addition and removal of CO2. The methane isotopic composition also can be affected by mixing of isotopically heavier thermogenic gas. The possible complicating factors require that geologic, chemical, and isotopic evidence be considered in attempts to interpret the origin of gas accumulations. Accumulations of biogenic gas have been discovered in Canada, Germany, Italy, Japan, Trinidad, the United States, and USSR in Cretaceous and younger rocks, at less than 3,350 m of burial, and in marine and nonmarine rocks. Other gas accumulations of biogenic origin have undoubtedly been discovered; however, data that permit their recognition are not available.

613 citations

Journal ArticleDOI
TL;DR: In this article, the gas hydrate stability zone (GHSZ) from the seafloor to its base was sampled during Leg 204 of the Ocean Drilling Program (ODP) to the accretionary complex of the Cascadia subduction zone.

314 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered seven hydrocarbon gases that occur in marine sediment and found that they originate from the decomposition of organic matter by biochemical and chemical processes, including Methane (C1), propane, isobutane (i-C4), and normal butane (n−C4).
Abstract: Hydrocarbon gases are common in marine sediment accumulating in present-day oceans. Such gases originate from the decomposition of organic matter by biochemical and chemical processes. We consider seven hydrocarbon gases that occur in marine sediment (Table 1). In addition, inorganic gases such as nitrogen (N2), argon (Ar), carbon dioxide (C02), and helium (He) are present, but usually as minor or trace components in natural gas. These will not be discussed here. Methane (C1) is almost always the dominant component of the natural gas mixtures. Usually accompanying C1 are other hydrocarbon gases, including ethane (C2), propane (C3), isobutane (i-C4), and normal butane (n­ C4), that are present in variable amounts from traces to 30-40 percent collectively. Marine sediments also contain volatile hydrocarbons of higher molecular weight, e.g. Cs through at least C7 (Hunt 1975), but our discussion is confined to permanent gas hydrocarbons C1 through C4. In addition to gaseous alkanes, the alkenes, ethene (C2;) and propene (C3;), are found also, but mainly in sediment near the seafloor and in the overlying water column. There are three main stages of natural gas formation during the burial history of sediment. The earliest stage is biological C1 formation, which

292 citations

Journal ArticleDOI
TL;DR: In this article, a correlation between the hydrogen index and carbon isotopic composition (σ 13C) of Cretaceous organic carbon (OC) was found to be a strong indicator of the marine source of organic carbon.

241 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the major dissolved carbon species in diagenetic settings are represented by the two carbon redox endmembers CH4 and CO2, and they can be tracked with the aid of carbon ( 13 C / 12 C ) and hydrogen ( D/H≡ 2 H/ 1 H ) isotopes.

2,589 citations

Journal ArticleDOI
TL;DR: In this article, a simple analytical theory that predicts the critical tapers of subaerial and submarine Coulomb wedges is developed and tested quantitatively in three ways: First, laboratory model experiments with dry sand match the theory.
Abstract: The overall mechanics of fold-and-thrust belts and accretionary wedges along compressive plate boundaries is considered to be analogous to that of a wedge of soil or snow in front of a moving bulldozer. The material within the wedge deforms until a critical taper is attained, after which it slides stably, continuing to grow at constant taper as additional material is encountered at the toe. The critical taper is the shape for which the wedge is on the verge of failure under horizontal compression everywhere, including the basal decollement. A wedge of less than critical taper will not slide when pushed but will deform internally, steepening its surface slope until the critical taper is attained. Common silicate sediments and rocks in the upper 10-15 km of the crust have pressure-dependent brittle compressive strengths which can be approximately represented by the empirical Coulomb failure criterion, modified to account for the weakening effects of pore fluid pressure. A simple analytical theory that predicts the critical tapers of subaerial and submarine Coulomb wedges is developed and tested quantitatively in three ways: First, laboratory model experiments with dry sand match the theory. Second, the known surface slope, basal dip, and pore fluid pressures in the active fold-and-thrust belt of western Taiwan are used to determine the effective coefficient of internal friction within the wedge,/x = 1.03, consistent with Byerlee's empirical law of sliding friction,/at, = 0.85, on the base. This excess of internal strength over basal friction suggests that although the Taiwan wedge is highly deformed by imbricate thrusting, it is not so pervasively fractured that frictional sliding is always possible on surfaces of optimum orientation. Instead, the overall internal strength apparently is controlled by frictional sliding along suboptimally oriented planes and by the need to fracture some parts of the observed geometrically complex structure for continued deformation. Third, using the above values of/at, and/x, we predict Hubbert-Rubey fluid pressure ratios X = Xt, for a number of other active subaerial and submarine accretionary wedges based on their observed tapers, finding values everywhere in excess of hydrostatic. These predicted overpressures are reasonable in light of petroleum drilling experience in general and agree with nearby fragmentary well data in specific wedges where they are available. The pressure-dependent Coulomb wedge theory developed here is expected to break down if the decollement exhibits pressure-independent plastic behavior because of either temperature or rock type. The effects of this breakdown are observed in the abrupt decrease in taper where wedge thicknesses exceed about 15 km, which is the predicted depth of the brittle-plastic transition in quartz-rich rocks for typical geothermal gradients. We conclude that fold-and-thrust belts and accretionary wedges have the mechanics of bulldozer wedges in compression and that normal laboratory fracture and frictional strengths are appropriate to mountain-building processes in the upper crust, above the brittle-plastic transition.

2,476 citations

Journal ArticleDOI
TL;DR: In this article, the authors estimate that the Barnett Shale has a total generation potential of about 609 bbl of oil equivalent/ac-ft or the equivalent of 3657 mcf/acft (84.0 m 3 /m 3 ).
Abstract: Shale-gas resource plays can be distinguished by gas type and system characteristics. The Newark East gas field, located in the Fort Worth Basin, Texas, is defined by thermogenic gas production from low-porosity and low-permeability Barnett Shale. The Barnett Shale gas system, a self-contained source-reservoir system, has generated large amounts of gas in the key productive areas because of various characteristics and processes, including (1) excellent original organic richness and generation potential; (2) primary and secondary cracking of kerogen and retained oil, respectively; (3) retention of oil for cracking to gas by adsorption; (4) porosity resulting from organic matter decomposition; and (5) brittle mineralogical composition. The calculated total gas in place (GIP) based on estimated ultimate recovery that is based on production profiles and operator estimates is about 204 bcf/section (5.78 × 10 9 m 3 /1.73 × 10 4 m 3 ). We estimate that the Barnett Shale has a total generation potential of about 609 bbl of oil equivalent/ac-ft or the equivalent of 3657 mcf/ac-ft (84.0 m 3 /m 3 ). Assuming a thickness of 350 ft (107 m) and only sufficient hydrogen for partial cracking of retained oil to gas, a total generation potential of 820 bcf/section is estimated. Of this potential, approximately 60% was expelled, and the balance was retained for secondary cracking of oil to gas, if sufficient thermal maturity was reached. Gas storage capacity of the Barnett Shale at typical reservoir pressure, volume, and temperature conditions and 6% porosity shows a maximum storage capacity of 540 mcf/ac-ft or 159 scf/ton.

2,418 citations

Journal ArticleDOI
Robert A. Berner1
TL;DR: In this article, it was shown that organic matter appears to be the major control on pyrite formation in normal (non-euxinic) terrigenous marine sediments where dissolved sulfate and iron minerals are abundant.

2,234 citations

MonographDOI
16 Dec 2004
TL;DR: The second edition of The Biomarker Guide as mentioned in this paper provides a comprehensive account of the role that biomarker technology plays both in petroleum exploration and in understanding Earth history and processes.
Abstract: The second edition of The Biomarker Guide is a fully updated and expanded version of this essential reference. Now in two volumes, it provides a comprehensive account of the role that biomarker technology plays both in petroleum exploration and in understanding Earth history and processes. Biomarkers and Isotopes in the Environment and Human History details the origins of biomarkers and introduces basic chemical principles relevant to their study. It discusses analytical techniques, and applications of biomarkers to environmental and archaeological problems. The Biomarker Guide is an invaluable resource for geologists, petroleum geochemists, biogeochemists, environmental scientists and archaeologists.

2,163 citations