scispace - formally typeset
Search or ask a question
Author

George E. P. Box

Bio: George E. P. Box is an academic researcher from University of Wisconsin-Madison. The author has contributed to research in topics: Time series & Bayesian probability. The author has an hindex of 94, co-authored 276 publications receiving 131808 citations. Previous affiliations of George E. P. Box include Imperial Chemical Industries & University of North Carolina at Chapel Hill.


Papers
More filters
Book
01 Jan 1970
TL;DR: In this article, a complete revision of a classic, seminal, and authoritative book that has been the model for most books on the topic written since 1970 is presented, focusing on practical techniques throughout, rather than a rigorous mathematical treatment of the subject.
Abstract: From the Publisher: This is a complete revision of a classic, seminal, and authoritative book that has been the model for most books on the topic written since 1970. It focuses on practical techniques throughout, rather than a rigorous mathematical treatment of the subject. It explores the building of stochastic (statistical) models for time series and their use in important areas of application —forecasting, model specification, estimation, and checking, transfer function modeling of dynamic relationships, modeling the effects of intervention events, and process control. Features sections on: recently developed methods for model specification, such as canonical correlation analysis and the use of model selection criteria; results on testing for unit root nonstationarity in ARIMA processes; the state space representation of ARMA models and its use for likelihood estimation and forecasting; score test for model checking; and deterministic components and structural components in time series models and their estimation based on regression-time series model methods.

19,748 citations

Journal ArticleDOI
TL;DR: This revision of a classic, seminal, and authoritative book explores the building of stochastic models for time series and their use in important areas of application —forecasting, model specification, estimation, and checking, transfer function modeling of dynamic relationships, modeling the effects of intervention events, and process control.
Abstract: From the Publisher: This is a complete revision of a classic, seminal, and authoritative book that has been the model for most books on the topic written since 1970. It focuses on practical techniques throughout, rather than a rigorous mathematical treatment of the subject. It explores the building of stochastic (statistical) models for time series and their use in important areas of application —forecasting, model specification, estimation, and checking, transfer function modeling of dynamic relationships, modeling the effects of intervention events, and process control. Features sections on: recently developed methods for model specification, such as canonical correlation analysis and the use of model selection criteria; results on testing for unit root nonstationarity in ARIMA processes; the state space representation of ARMA models and its use for likelihood estimation and forecasting; score test for model checking; and deterministic components and structural components in time series models and their estimation based on regression-time series model methods.

12,650 citations

Journal ArticleDOI
TL;DR: In this article, Lindley et al. make the less restrictive assumption that such a normal, homoscedastic, linear model is appropriate after some suitable transformation has been applied to the y's.
Abstract: [Read at a RESEARCH METHODS MEETING of the SOCIETY, April 8th, 1964, Professor D. V. LINDLEY in the Chair] SUMMARY In the analysis of data it is often assumed that observations Yl, Y2, *-, Yn are independently normally distributed with constant variance and with expectations specified by a model linear in a set of parameters 0. In this paper we make the less restrictive assumption that such a normal, homoscedastic, linear model is appropriate after some suitable transformation has been applied to the y's. Inferences about the transformation and about the parameters of the linear model are made by computing the likelihood function and the relevant posterior distribution. The contributions of normality, homoscedasticity and additivity to the transformation are separated. The relation of the present methods to earlier procedures for finding transformations is discussed. The methods are illustrated with examples.

12,158 citations

Journal ArticleDOI
TL;DR: Time Series Analysis and Forecasting: principles and practice as mentioned in this paper The Oxford Handbook of Quantitative Methods, Vol. 3, No. 2: Statistical AnalysisTime-Series ForecastingPractical Time-Series AnalysisApplied Bayesian Forecasting and Time Series AnalysisSAS for Forecasting Time SeriesApplied Time Series analysisTime Series analysisElements of Nonlinear Time Series analyses and forecastingTime series analysis and forecasting by Example.
Abstract: Advances in Time Series Analysis and ForecastingThe Analysis of Time SeriesForecasting: principles and practiceIntroduction to Time Series Analysis and ForecastingThe Oxford Handbook of Quantitative Methods, Vol. 2: Statistical AnalysisTime-Series ForecastingPractical Time Series AnalysisApplied Bayesian Forecasting and Time Series AnalysisSAS for Forecasting Time SeriesApplied Time Series AnalysisTime Series AnalysisElements of Nonlinear Time Series Analysis and ForecastingTime Series Analysis and Forecasting by ExampleIntroduction to Time Series Analysis and ForecastingTime Series Analysis and AdjustmentSpatial Time SeriesPractical Time Series Forecasting with RA Very British AffairMachine Learning for Time Series Forecasting with PythonTime Series with PythonTime Series Analysis: Forecasting & Control, 3/EIntroduction to Time Series Forecasting With PythonThe Analysis of Time SeriesTime Series Analysis and Its ApplicationsForecasting and Time Series AnalysisIntroduction to Time Series and ForecastingIntroduction to Time Series Analysis and ForecastingTime Series Analysis in the Social SciencesPractical Time Series AnalysisTime Series Analysis and ForecastingTheory and Applications of Time Series AnalysisApplied Time SeriesSAS for Forecasting Time Series, Third EditionTime Series AnalysisPredictive Modeling Applications in Actuarial ScienceIntroductory Time Series with RHands-On Time Series Analysis with RAdvances in Time Series ForecastingTime Series Analysis and Forecasting Using Python & RAdvanced Time Series Data Analysis

6,184 citations

Journal ArticleDOI
TL;DR: In this paper, the overall test for lack of fit in autoregressive-moving average models proposed by Box & Pierce (1970) is considered, and it is shown that a substantially improved approximation results from a simple modification of this test.
Abstract: SUMMARY The overall test for lack of fit in autoregressive-moving average models proposed by Box & Pierce (1970) is considered. It is shown that a substantially improved approximation results from a simple modification of this test. Some consideration is given to the power of such tests and their robustness when the innovations are nonnormal. Similar modifications in the overall tests used for transfer function-noise models are proposed.

6,008 citations


Cited by
More filters
Book
B. J. Winer1
01 Jan 1962
TL;DR: In this article, the authors introduce the principles of estimation and inference: means and variance, means and variations, and means and variance of estimators and inferors, and the analysis of factorial experiments having repeated measures on the same element.
Abstract: CHAPTER 1: Introduction to Design CHAPTER 2: Principles of Estimation and Inference: Means and Variance CHAPTER 3: Design and Analysis of Single-Factor Experiments: Completely Randomized Design CHAPTER 4: Single-Factor Experiments Having Repeated Measures on the Same Element CHAPTER 5: Design and Analysis of Factorial Experiments: Completely-Randomized Design CHAPTER 6: Factorial Experiments: Computational Procedures and Numerical Example CHAPTER 7: Multifactor Experiments Having Repeated Measures on the Same Element CHAPTER 8: Factorial Experiments in which Some of the Interactions are Confounded CHAPTER 9: Latin Squares and Related Designs CHAPTER 10: Analysis of Covariance

25,607 citations

Journal ArticleDOI
TL;DR: This chapter discusses design and analysis of single-Factor Experiments: Completely Randomized Design and Factorial Experiments in which Some of the Interactions are Confounded.

24,665 citations

Book
08 Sep 2000
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,600 citations

Journal ArticleDOI
TL;DR: In this article, the limit distributions of the estimator of p and of the regression t test are derived under the assumption that p = ± 1, where p is a fixed constant and t is a sequence of independent normal random variables.
Abstract: Let n observations Y 1, Y 2, ···, Y n be generated by the model Y t = pY t−1 + e t , where Y 0 is a fixed constant and {e t } t-1 n is a sequence of independent normal random variables with mean 0 and variance σ2. Properties of the regression estimator of p are obtained under the assumption that p = ±1. Representations for the limit distributions of the estimator of p and of the regression t test are derived. The estimator of p and the regression t test furnish methods of testing the hypothesis that p = 1.

23,509 citations

Journal ArticleDOI
TL;DR: In this paper, a natural generalization of the ARCH (Autoregressive Conditional Heteroskedastic) process introduced in 1982 to allow for past conditional variances in the current conditional variance equation is proposed.
Abstract: A natural generalization of the ARCH (Autoregressive Conditional Heteroskedastic) process introduced in Engle (1982) to allow for past conditional variances in the current conditional variance equation is proposed. Stationarity conditions and autocorrelation structure for this new class of parametric models are derived. Maximum likelihood estimation and testing are also considered. Finally an empirical example relating to the uncertainty of the inflation rate is presented.

17,555 citations