scispace - formally typeset
Search or ask a question
Author

George E. Palade

Bio: George E. Palade is an academic researcher from Rockefeller University. The author has contributed to research in topics: Endoplasmic reticulum & Golgi apparatus. The author has an hindex of 86, co-authored 123 publications receiving 35049 citations. Previous affiliations of George E. Palade include Brookhaven National Laboratory & Rockefeller Institute of Government.


Papers
More filters
Journal ArticleDOI
TL;DR: The tight junction is impervious to concentrated protein solutions and appears to function as a diffusion barrier or "seal," and the desmosome and probably also the zonula adhaerens may represent intercellular attachment devices.
Abstract: The epithelia of a number of glands and cavitary organs of the rat and guinea pig have been surveyed, and in all cases investigated, a characteristic tripartite junctional complex has been found between adjacent cells. Although the complex differs in precise arrangement from one organ to another, it has been regularly encountered in the mucosal epithelia of the stomach, intestine, gall bladder, uterus, and oviduct; in the glandular epithelia of the liver, pancreas, parotid, stomach, and thyroid; in the epithelia of pancreatic, hepatic, and salivary ducts; and finally, between the epithelial cells of the nephron (proximal and distal convolution, collecting ducts). The elements of the complex, identified as zonula occludens (tight junction), zonula adhaerens (intermediary junction), and macula adhaerens (desmosome), occupy a juxtaluminal position and succeed each other in the order given in an apical-basal direction. The zonula occludens (tight junction) is characterized by fusion of the adjacent cell membranes resulting in obliteration of the intercellular space over variable distances. Within the obliterated zone, the dense outer leaflets of the adjoining cell membranes converge to form a single intermediate line. A diffuse band of dense cytoplasmic material is often associated with this junction, but its development varies from one epithelium to another. The zonula adhaerens (intermediate junction) is characterized by the presence of an intercellular space ( approximately 200 A) occupied by homogeneous, apparently amorphous material of low density; by strict parallelism of the adjoining cell membranes over distances of 0.2 to 0.5 micro; and by conspicuous bands of dense material located in the subjacent cytoplasmic matrix. The desmosome or macula adhaerens is also characterized by the presence of an intercellular space ( approximately 240 A) which, in this case, contains a central disc of dense material; by discrete cytoplasmic plaques disposed parallel to the inner leaflet of each cell membrane; and by the presence of bundles of cytoplasmic fibrils converging on the plaques. The zonula occludens appears to form a continuous belt-like attachment, whereas the desmosome is a discontinuous, button-like structure. The zomula adhaerens is continuous in most epithelia but discontinuous in some. Observations made during experimental hemoglobinuria in rats showed that the hemoglobin, which undergoes enough concentration in the nephron lumina to act as an electron-opaque mass tracer, does not penetrate the intercellular spaces beyond the zonula occludens. Similar observations were made in pancreatic acini and ducts where discharged zymogen served as a mass tracer. Hence the tight junction is impervious to concentrated protein solutions and appears to function as a diffusion barrier or "seal." The desmosome and probably also the zonula adhaerens may represent intercellular attachment devices.

3,388 citations

Journal ArticleDOI
TL;DR: Fixation experiments with buffered OsO4 solutions have shown that the appearance of the fixed cells is conditioned by the pH of the fixative, and the quality of fixation can be materially improved by buffering the OsO 4 solutions at pH 7.3-7.5 with acetate-veronal buffer.
Abstract: Osmium tetroxide fixation of tissue blocks, as usually effected, is preceded by an acidification of the tissue. This acidification is probably responsible for morphological alterations which are notably disturbing in electron microscopy. The acidification and the resulting morphological alterations cannot be prevented by homogenizing the tissue directly in OsO4 solutions or by adding enzyme inhibitors (fluoride, iodoscetamide) to the fixative. Fixation experiments with buffered OsO4 solutions have shown that the appearance of the fixed cells is conditioned by the pH of the fixative. The quality of fixation can be materially improved by buffering the OsO4 solutions at pH 7.3-7.5, The acetate-veronal buffer appeared to be the most favorable of the buffers tested, Because of these findings, 1 per cent OsO4 buffered at pH 7.3-7.5 with acetate-veronal buffer is recommended as an appropriate fixative for electron microscopy.

2,815 citations

Journal ArticleDOI
TL;DR: A hitherto unknown rod-shaped cytoplasmic component which consists of a bundle of fine tubules, enveloped by a tightly fitted membrane, was regularly found in endothelial cells of small arteries in various organs in rat and man.
Abstract: A hitherto unknown rod-shaped cytoplasmic component which consists of a bundle of fine tubules, enveloped by a tightly fitted membrane, was regularly found in endothelial cells of small arteries in various organs in rat and man. It is about 0.1 µ thick, measures up to 3 µ in length, and contains several small tubules, ∼150 A thick, embedded in a dense matrix, and disposed parallel to the long axis of the rod. In some of these cells, the cisternae of the endoplasmic reticulum are greatly distended by the accumulation of a dense, finely granular material. The nature and significance of these cytoplasmic components are yet unknown.

1,037 citations

Journal ArticleDOI
TL;DR: Interpreted in the light of current physiological data, these findings suggest that the diffusion of water, ions, and small, water-soluble molecules is impeded along the intercellular spaces of the epidermis by zonulae occludentes while it is facilitated from cell to cell within the epidesis by z onulae and maculae OccludENTes.
Abstract: Cell junctions have been investigated in the amphibian epidermis, a stratified squamous epithelium, and compared to those described previously in simple columnar epithelia of mammalian cavitary organs In adult frogs and toads, and in larvae approaching metamorphosis, belts of membrane fusion or zonulae occludentes of considerable depth are regularly found between adjoining cells of the outermost layer of the stratum corneum, binding the cells together into a continuous, uninterrupted sheet Another set of occluding zonules appears in the second cornified layer (when such a layer is present), and a third set usually occurs in the outermost layer of the stratum granulosum Specialized elements described as "modified" and "composite" desmosomes are encountered along the lateral and basal aspects, respectively, of the cornified cells; ordinary desmosomes and maculae occludentes (ie, spots of membrane fusion) are found in all other strata The usual 200 A intercellular gap is generally maintained between the cells of the stratum germinativum at the basal ends of the intercellular spaces Hence, the intercellular spaces of the epidermis form a largely continuous network, closed to the external medium and open to the dermal interstitia The situation is comparable to that found in columnar epithelia, except that the intercellular spaces are much more extensive, and an extracellular subcompartment (or two) apparently exists in the stratum corneum and between the latter and the stratum granulosum The last subcompartment is usually filled with a dense substance, probably derived from discharged secretory granules The tripartite junctional complex characteristic of lumen-lining epithelia (ie, a zonula occludens followed by a zonula adhaerens, and desmosome) is seen only in early larvae; in adults and in larvae approaching metamorphosis, the occluding zonule is followed directly by a series of modified desmosomes Interpreted in the light of current physiological data, these findings suggest that the diffusion of water, ions, and small, water-soluble molecules is impeded along the intercellular spaces of the epidermis by zonulae occludentes while it is facilitated from cell to cell within the epidermis by zonulae and maculae occludentes

922 citations


Cited by
More filters
Journal ArticleDOI
18 Feb 1972-Science
TL;DR: Results strongly indicate that the bivalent antibodies produce an aggregation of the surface immunoglobulin molecules in the plane of the membrane, which can occur only if the immunoglOBulin molecules are free to diffuse in the membrane.
Abstract: A fluid mosaic model is presented for the gross organization and structure of the proteins and lipids of biological membranes. The model is consistent with the restrictions imposed by thermodynamics. In this model, the proteins that are integral to the membrane are a heterogeneous set of globular molecules, each arranged in an amphipathic structure, that is, with the ionic and highly polar groups protruding from the membrane into the aqueous phase, and the nonpolar groups largely buried in the hydrophobic interior of the membrane. These globular molecules are partially embedded in a matrix of phospholipid. The bulk of the phospholipid is organized as a discontinuous, fluid bilayer, although a small fraction of the lipid may interact specifically with the membrane proteins. The fluid mosaic structure is therefore formally analogous to a two-dimensional oriented solution of integral proteins (or lipoproteins) in the viscous phospholipid bilayer solvent. Recent experiments with a wide variety of techniqes and several different membrane systems are described, all of which abet consistent with, and add much detail to, the fluid mosaic model. It therefore seems appropriate to suggest possible mechanisms for various membrane functions and membrane-mediated phenomena in the light of the model. As examples, experimentally testable mechanisms are suggested for cell surface changes in malignant transformation, and for cooperative effects exhibited in the interactions of membranes with some specific ligands. Note added in proof: Since this article was written, we have obtained electron microscopic evidence (69) that the concanavalin A binding sites on the membranes of SV40 virus-transformed mouse fibroblasts (3T3 cells) are more clustered than the sites on the membranes of normal cells, as predicted by the hypothesis represented in Fig. 7B. T-here has also appeared a study by Taylor et al. (70) showing the remarkable effects produced on lymphocytes by the addition of antibodies directed to their surface immunoglobulin molecules. The antibodies induce a redistribution and pinocytosis of these surface immunoglobulins, so that within about 30 minutes at 37 degrees C the surface immunoglobulins are completely swept out of the membrane. These effects do not occur, however, if the bivalent antibodies are replaced by their univalent Fab fragments or if the antibody experiments are carried out at 0 degrees C instead of 37 degrees C. These and related results strongly indicate that the bivalent antibodies produce an aggregation of the surface immunoglobulin molecules in the plane of the membrane, which can occur only if the immunoglobulin molecules are free to diffuse in the membrane. This aggregation then appears to trigger off the pinocytosis of the membrane components by some unknown mechanism. Such membrane transformations may be of crucial importance in the induction of an antibody response to an antigen, as well as iv other processes of cell differentiation.

7,790 citations

Journal ArticleDOI
TL;DR: Results of older bio-kinetic studies with NSPs and newer epidemiologic and toxicologic studies with airborne ultrafine particles can be viewed as the basis for the expanding field of nanotoxicology, which can be defined as safety evaluation of engineered nanostructures and nanodevices.
Abstract: Although humans have been exposed to airborne nanosized particles (NSPs; < 100 nm) throughout their evolutionary stages, such exposure has increased dramatically over the last century due to anthropogenic sources. The rapidly developing field of nanotechnology is likely to become yet another source through inhalation, ingestion, skin uptake, and injection of engineered nanomaterials. Information about safety and potential hazards is urgently needed. Results of older bio-kinetic studies with NSPs and newer epidemiologic and toxicologic studies with airborne ultrafine particles can be viewed as the basis for the expanding field of nanotoxicology, which can be defined as safety evaluation of engineered nanostructures and nanodevices. Collectively, some emerging concepts of nanotoxicology can be identified from the results of these studies. When inhaled, specific sizes of NSPs are efficiently deposited by diffusional mechanisms in all regions of the respiratory tract. The small size facilitates uptake into cells and transcytosis across epithelial and endothelial cells into the blood and lymph circulation to reach potentially sensitive target sites such as bone marrow, lymph nodes, spleen, and heart. Access to the central nervous system and ganglia via translocation along axons and dendrites of neurons has also been observed. NSPs penetrating the skin distribute via uptake into lymphatic channels. Endocytosis and biokinetics are largely dependent on NSP surface chemistry (coating) and in vivo surface modifications. The greater surface area per mass compared with larger-sized particles of the same chemistry renders NSPs more active biologically. This activity includes a potential for inflammatory and pro-oxidant, but also antioxidant, activity, which can explain early findings showing mixed results in terms of toxicity of NSPs to environmentally relevant species. Evidence of mitochondrial distribution and oxidative stress response after NSP endocytosis points to a need for basic research on their interactions with subcellular structures. Additional considerations for assessing safety of engineered NSPs include careful selections of appropriate and relevant doses/concentrations, the likelihood of increased effects in a compromised organism, and also the benefits of possible desirable effects. An interdisciplinary team approach (e.g., toxicology, materials science, medicine, molecular biology, and bioinformatics, to name a few) is mandatory for nanotoxicology research to arrive at an appropriate risk assessment.

7,092 citations

Journal ArticleDOI
TL;DR: It is demonstrated that it is possible to culture morphologically and immunologically identifiable human endothelial cells for periods up to 5 mo and ABH antigens appropriate to the tissue donor's blood type were not detectable on cultured smooth muscle cells or fibroblasts.
Abstract: Endothelial cells were isolated from freshly obtained human umbilical cords by collagenase digestion of the interior of the umbilical vein. The cells were grown in tissue culture as a homogeneous population for periods up to 5 mo and some lines were subcultured for 10 serial passages. During the logarithmic phase of cell growth, cell-doubling time was 92 h. Light, phase contrast, and scanning electron microscopy demonstrated that cultured human endothelial cells grew as monolayers of closely opposed, polygonal large cells whereas both cultured human fibroblasts and human smooth muscle cells grew as overlapping layers of parallel arrays of slender, spindle-shaped cells. By transmission electron microscopy, cultured endothelial cells were seen to contain cytoplasmic inclusions (Weibel-Palade bodies) characteristic of in situ endothelial cells. These inclusions were also found in endothelial cells lining umbilical veins but were not seen in smooth muscle cells or fibroblasts in culture or in situ. Cultured endothelial cells contained abundant quantities of smooth muscle actomyosin. Cultured endothelial cells also contained ABH antigens appropriate to the tissue donor's blood type; these antigens were not detectable on cultured smooth muscle cells or fibroblasts. These studies demonstrate that it is possible to culture morphologically and immunologically identifiable human endothelial cells for periods up to 5 mo.

6,874 citations

Journal ArticleDOI
TL;DR: The early stages of absorption of intravenously injected horseradish peroxidase in proximal tubules of mouse kidney were studied with a new ultrastructural cytochemical technique, which gives sharp localization and is sensitive to protein transport.
Abstract: The early stages of absorption of intravenously injected horseradish peroxidase in proximal tubules of mouse kidney were studied with a new ultrastructural cytochemical technique. In animals killed as early as 90 sec after injection, reaction product was found on the brushborder membranes and in the apical tubular invaginations. From the latter structures it was transported to the apical vacuoles, in which it was progressively concentrated to form protein absorption droplets. The method, which employs 3,3'-diaminobenzidine as oxidizable substrate, gives sharp localization and is sensitive. This system is advantageous in studying the early stages of renal tubular protein absorption, since small amounts of protein on membranes and in tubules and vesicles can be detected easily. The method also appears promising for studying protein transport in a variety of other cells and tissues.

6,495 citations

Book ChapterDOI
Per Ottar Seglen1
TL;DR: This chapter discusses preparation of isolated rat liver cells by incubation of rat liver minces with pronase, which results in most of the liver parenchyma is digested, while nonparenchymal cells remain intact and can be recovered from the incubate.
Abstract: Publisher Summary This chapter discusses preparation of isolated rat liver cells The early mechanical and chemical methods for liver-cell preparation were relatively successful in converting liver tissue to a suspension of isolated cells The successful preparation of intact liver cells by perfusion with collagenase is technically quite difficult The major method for preparation of nonparenchymal liver cells is based on the selective sensitivity of parenchymal cells toward proteases By incubation of rat liver minces with pronase, most of the liver parenchyma is digested, while nonparenchymal cells remain intact and can be recovered from the incubate Similar results have been reported with trypsin digestion of collagenase-dispersed liver minces, but pronase appears to be more effective The most common procedure is to perfuse the liver briefly with pronase before it is minced and incubated with the enzyme Such direct pronase methods have been used by several investigators with yields of nonparenchymal liver cells reported to be in the range 2–15 × 10 6 cells/gm liver

5,285 citations