scispace - formally typeset
Search or ask a question
Author

George Gabriel Stokes

Bio: George Gabriel Stokes is an academic researcher. The author has an hindex of 1, co-authored 1 publications receiving 434 citations.

Papers
More filters
Book ChapterDOI
01 Jan 2007
TL;DR: In this paper, it was shown that the theory of D'Alembert's principle of equality of pressure in all directions is a necessary consequence of the absence of tangential action.
Abstract: T he equations of Fluid Motion commonly employed depend upon the fundamental hypothesis that the mutual action of two adjacent elements of the fluid is normal to the surface which separates them. From this assumption the equality of pressure in all directions is easily deduced, and then the equations of motion are formed according to D'Alembert's principle. This appears to me the most natural light in which to view the subject; for the two principles of the absence of tangential action, and of the equality of pressure in all directions ought not to be assumed as independent hypotheses, as is sometimes done, inasmuch as the latter is a necessary consequence of the former The equations of motion so formed are very complicated, but yet they admit of solution in some instances, especially in the case of small oscillations. The results of the theory agree on the whole with observation, so far as the time of oscillation is concerned. But there is a whole class of motions of which the common theory takes no cognizance whatever, namely, those which depend on the tangential action called into play by the sliding of one portion of a fluid along another, or of a fluid along the surface of a solid, or of a different fluid, that action in fact which performs the same part with fluids that friction does with solids. Thus, when a ball pendulum oscillates in an indefinitely extended fluid, the common theory gives the arc of oscillation constant.

494 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, relativistic viscous hydrodynamics can directly be solved numerically and the resulting fluid dynamic equations are shown to be consistent for all these derivations when properly accounting for the respective region of applicability, and can be applied to both weakly and strongly coupled systems.
Abstract: Starting with a brief introduction into the basics of relativistic fluid dynamics, I discuss our current knowledge of a relativistic theory of fluid dynamics in the presence of (mostly shear) viscosity. Derivations based on the generalized second law of thermodynamics, kinetic theory, and a complete second-order gradient expansion are reviewed. The resulting fluid dynamic equations are shown to be consistent for all these derivations, when properly accounting for the respective region of applicability, and can be applied to both weakly and strongly coupled systems. In its modern formulation, relativistic viscous hydrodynamics can directly be solved numerically. This has been useful for the problem of ultrarelativistic heavy-ion collisions, and I will review the setup and results of a hydrodynamic description of experimental data for this case.

514 citations

Journal ArticleDOI
TL;DR: In this paper, the physics behind the two-way coupling from the electrical to the mechanical domain through the piezoelectric actuator, where an electrical signal is transformed into a mechanical deformation of the printhead structure, is discussed.

481 citations

Book
15 Jul 2007
TL;DR: Important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral equation research.
Abstract: Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral equation research. Also, learning the fundamentals of linear elastic wave theory does not require a quantum leap for electromagnetic practitioners. Integral equation methods have been around for several decades, and their introduction to electromagnetics has been due to the seminal works of Richmond and Harrington in the 1960s. There was a surge in the interest in this topic in the 1980s (notably the work of Wilton and his coworkers) due to increased computing power. The interest in this area was on the wane when it was demonstrated that differential equation methods, with their sparse matrices, can solve many problems more efficiently than integral equation methods. Recently, due to the advent of fast algorithms, there has been a revival in integral equation methods in electromagnetics. Much of our work in recent years has been in fast algorithms for integral equations, which prompted our interest in integral equation methods. While previously, only tens of thousands of unknowns could be solved by integral equation methods, now, tens of millions of unknowns can be solved with fast algorithms. This has prompted new enthusiasm in integral equation methods.

473 citations

Journal ArticleDOI
TL;DR: A survey of vortex-identification methods can be found in this paper, where the most widely used local criteria (applied point by point) sharing a basis in the velocity-gradient tensor ∇u are treated more thoroughly to recall their underlying ideas and physical aspects.

430 citations

Book
27 Mar 2017
TL;DR: Multiphase Flow In Permeable Media Co Uk Martin J. Blunt and Je Santos Multiphaseporousmediapalabos Library.
Abstract: Hydrocarbon production, gas recovery from shale, CO2 storage and water management have a common scientific underpinning: multiphase flow in porous media. This book provides a fundamental description of multiphase flow through porous rock, with emphasis on the understanding of displacement processes at the pore, or micron, scale. Fundamental equations and principal concepts using energy, momentum, and mass balance are developed, and the latest developments in high-resolution three-dimensional imaging and associated modelling are explored. The treatment is pedagogical, developing sound physical principles to predict flow and recovery through complex rock structures, while providing a review of the recent literature. This systematic approach makes it an excellent reference for those who are new to the field. Inspired by recent research, and based on courses taught to thousands of students and professionals from around the world, it provides the scientific background necessary for a quantitative assessment of multiphase subsurface flow processes, and is ideal for hydrology and environmental engineering students, as well as professionals in the hydrocarbon, water and carbon storage industries.

427 citations