scispace - formally typeset
Search or ask a question
Author

George I. Haddad

Other affiliations: Washington State University
Bio: George I. Haddad is an academic researcher from University of Michigan. The author has contributed to research in topics: Diode & Heterojunction bipolar transistor. The author has an hindex of 33, co-authored 242 publications receiving 4372 citations. Previous affiliations of George I. Haddad include Washington State University.


Papers
More filters
Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, the authors describe new bistable logic families using resonant tunneling diodes (RTD's) in conjunction with high-performance III-V devices such as heterojunction bipolar transistors (HBT's) and modulation doped field effect transistors(MODFET's) for binary and multiple-valued logic.
Abstract: Many semiconductor quantum devices utilize a novel tunneling transport mechanism that allows picosecond device switching speeds The negative differential resistance characteristic of these devices, achieved due to resonant tunneling, is also ideally suited for the design of highly compact, self-latching logic circuits As a result, quantum device technology is a promising emerging alternative for high-performance very-large-scale-integration design The bistable nature of the basic logic gates implemented using resonant tunneling devices has been utilized in the development of a gate-level pipelining technique, called nanopipelining, that significantly improves the throughput and speed of pipelined systems The advent of multiple-peak resonant tunneling diodes provides a viable means for efficient design of multiple-valued circuits with decreased interconnect complexity and reduced device count as compared to multiple-valued circuits in conventional technologies This paper details various circuit design accomplishments in the area of binary and multiple-valued logic using resonant tunneling diodes (RTD's) in conjunction with high-performance III-V devices such as heterojunction bipolar transistors (HBT's) and modulation doped field-effect transistors (MODFET's) New bistable logic families using RTD+HBT and RTD+MODFET gates are described that provide a single-gate, self-latching majority function in addition to basic NAND, NOR, and inverter gates

477 citations

Journal ArticleDOI
01 Apr 1998
TL;DR: Comparisons among the various RTD physical models and major features of RTD's, resonant interband tunneling diodes, and Esaki tunnel diods are presented and the device operational principles, various modeling approaches, and major device properties are reviewed.
Abstract: The resonant tunneling diode (RTD) has been widely studied because of its importance in the field of nanoelectronic science and technology and its potential applications in very high speed/functionality devices and circuits. Even though much progress has been made in this regard, additional work is needed to realize the full potential of RTD's. As research on RTD's continues, we will try in this tutorial review to provide the reader with an overall and succinct picture of where we stand in this exciting field or research and to address the following questions: What makes RTD's so attractive? To what extent can RTD's be modeled for design purposes? What are the required and achievable device properties in terms of digital logic applications? To address these issues, we review the device operational principles, various modeling approaches, and major device properties. Comparisons among the various RTD physical models and major features of RTD's, resonant interband tunneling diodes, and Esaki tunnel diodes are presented. The tutorial and analysis provided in this paper may help the reader in becoming familiar with current research efforts, as well as to examine the important aspects in further RTD developments and their circuit applications.

335 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a numerical model in which the thermionic and tunneling mechanisms across an abrupt heterojunction interface are taken into account on the basis of the one dimensional drift-diffusion formulation.
Abstract: We present a numerical model in which the thermionic and tunneling mechanisms across an abrupt heterojunction interface are taken into account on the basis of the one dimensional drift-diffusion formulation. We use an expression of thermionic-field emission current formulated based on the WKB approximation as a boundary condition at the abrupt heterointerface which eventually limits the current transport over the barrier while maintaining the current continuity. The I-V characteristics of three types of GaAs/AlGaAs heterojunctions are analyzed by varying device dimension, doping density, and temperature and compared with those obtained by the thermionic emission model to illustrate the significance of both tunneling and thermionic emission mechanisms. We demonstrate that the role of tunneling in the overall current transport is very important in these abrupt heterojunctions especially at high doping densities and low temperatures. In the case of an MBE-grown AlGaAs triangular heterojunction barrier, the temperature-dependent I-V characteristics are measured and compared with the theoretical results. Good agreement is obtained when the tunneling process is taken into account by employing the thermionic-field emission boundary condition presented here.

187 citations

Journal ArticleDOI
TL;DR: In this paper, the authors showed that improved heat dissipation in InP Gunn devices resulted in RF power levels exceeding 200, 130, 80, and 25 mW at oscillation frequencies of around 103, 132, 152, and 162 GHz.
Abstract: Improved heat dissipation in InP Gunn devices resulted in RF power levels exceeding 200, 130, 80, and 25 mW at oscillation frequencies of around 103, 132, 152, and 162 GHz, respectively. Corresponding dc-to-RF conversion efficiencies exceeded 2.3% from 102 to 132 GHz. Power combining increased the available RF power levels to over 300 mW at 106 GHz, around 130 mW at 136 GHz, and more than 125 mW at 152 GHz with corresponding combining efficiencies from 80% to over 100%. Operation in a second harmonic mode yielded RF power levels of more than 3.5 mW at 214 GHz, over 2 mW around 220 GHz as well as over 1 mW around 280, 300, and 315 GHz. RF power levels exceeding 10 mW at 202 GHz, 9 mW around 210 GHz, and 4 mW around 235 GHz were obtained from GaAs TUNNETT diodes in a second harmonic mode as well. Corresponding dc-to-RF conversion efficiencies were around 1% at 202 and 210 GHz.

120 citations

Journal ArticleDOI
TL;DR: In this article, a two-dimensional finite-element simulation of a GaAs MESFET is presented to determine the drain current and transconductance as well as the two dimensional voltage, electron density, and electric-field distributions.
Abstract: Results of a two-dimensional finite-element simulation of a GaAs MESFET are presented. The simulation is used to determine the drain current and transconductance as well as the two-dimensional voltage, electron density, and electric-field distributions. It is shown that placement of a compensated doping region in the high electric-field region between gate and drain increases the drain current and transconductance by reducing the velocity-saturation effect. The transconductance and drain conductance of the MESFET in the saturation region of devices having different channel heights are compared with previous analysis.

109 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art and future prospects for terahertz quantum-cascade laser systems are reviewed, including efforts to increase their operating temperatures, deliver higher output powers and emit longer wavelengths.
Abstract: Six years after their birth, terahertz quantum-cascade lasers can now deliver milliwatts or more of continuous-wave coherent radiation throughout the terahertz range — the spectral regime between millimetre and infrared wavelengths, which has long resisted development. This paper reviews the state-of-the-art and future prospects for these lasers, including efforts to increase their operating temperatures, deliver higher output powers and emit longer wavelengths.

1,426 citations

Journal ArticleDOI
TL;DR: In this article, a wide variety of techniques, implementations, and active devices are presented to generate RF/microwave power for wireless communications, but also in applications such as jamming, imaging, RF heating, and miniature dc/dc converters.
Abstract: The generation of RF/microwave power is required not only in wireless communications, but also in applications such as jamming, imaging, RF heating, and miniature dc/dc converters. Each application has its own unique requirements for frequency, bandwidth, load, power, efficiency, linearity, and cost. RF power is generated by a wide variety of techniques, implementations, and active devices. Power amplifiers are incorporated into transmitters in a similarly wide variety of architectures, including linear, Kalm, envelope tracking, outphasing, and Doherty. Linearity can be improved through techniques such as feedback, feedforward, and predistortion.

1,335 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a basic understanding of the information micro-Raman Spectroscopy (mRS) may yield when applied to nanomaterials, a generic term for describing nano-sized crystals and bulk homogeneous materials with a structural disorder at the nanoscale.

905 citations

Journal ArticleDOI
Abstract: A theory for combined differential and common-mode normalized power waves is developed in terms of even and odd mode impedances and propagation constants for a microwave coupled line system. These are related to even and odd-mode terminal currents and voltages. Generalized s-parameters of a two-port are developed for waves propagating in several coupled modes. The two-port s-parameters form a 4-by-4 matrix containing differential-mode, common-mode, and cross-mode s-parameters. A special case of the theory allows the use of uncoupled transmission lines to measure the coupled-mode waves. Simulations verify the concept of these mixed-mode s-parameters, and demonstrate conversion from mode to mode for asymmetric microwave structures. >

780 citations

Proceedings ArticleDOI
28 May 1980
TL;DR: Very accurate and simple equations are presented for both single and coupled microstrip lines' electrical parameters, i.e. impedances, effective dielectric constants, and attenuation including the effect of anisotropy in the substrate as mentioned in this paper.
Abstract: Very accurate and simple equations are presented for both single and coupled microstrip lines' electrical parameters, i.e. impedances, effective dielectric constants, and attenuation including the effect of anisotropy in the substrate. For the single microstrip the effects of dispersion and non-zero strip thickness are also included.

754 citations