scispace - formally typeset
Search or ask a question
Author

George J. P. Britovsek

Bio: George J. P. Britovsek is an academic researcher from Imperial College London. The author has contributed to research in topics: Catalysis & Ligand. The author has an hindex of 40, co-authored 91 publications receiving 13508 citations. Previous affiliations of George J. P. Britovsek include Russian Academy of Sciences & University of Tasmania.
Topics: Catalysis, Ligand, Ethylene, Pyridine, Imine


Papers
More filters
Journal ArticleDOI
27 Jan 2006-Science
TL;DR: The integration of agroenergy crops and biorefinery manufacturing technologies offers the potential for the development of sustainable biopower and biomaterials that will lead to a new manufacturing paradigm.
Abstract: Biomass represents an abundant carbon-neutral renewable resource for the production of bioenergy and biomaterials, and its enhanced use would address several societal needs. Advances in genetics, biotechnology, process chemistry, and engineering are leading to a new manufacturing concept for converting renewable biomass to valuable fuels and products, generally referred to as the biorefinery. The integration of agroenergy crops and biorefinery manufacturing technologies offers the potential for the development of sustainable biopower and biomaterials that will lead to a new manufacturing paradigm.

5,344 citations

Journal ArticleDOI
TL;DR: Even late transition metal complexes function as active and selective catalysts for α-olefin polymerization, and an intense search has developed for new-generation catalysts, in both academic and industrial research laboratories.
Abstract: Even late transition metal complexes function as active and selective catalysts for α-olefin polymerization. The discovery of a highly active family of catalysts 1 based on iron, a metal that had no previous track record in this field, has highlighted the possibilities for further new catalyst discoveries. As a result, an intense search has developed for new-generation catalysts, in both academic and industrial research laboratories. R1=H, Me; R2=Me, iPr; R3=H, Me, iPr; R4=H, Me; X=halide.

1,737 citations

Journal ArticleDOI
TL;DR: A new family of olefin polymerization catalysts, derived from iron and cobalt complexes bearing 2,6-bis(imino)pyridyl ligands, was described in this paper.

1,045 citations

Journal ArticleDOI
TL;DR: In this article, the synthesis, characterization, and ethylene polymerization behavior of a series of iron and cobalt halide complexes, LMXn, bearing chelating 2,6-bis(imino)pyridyl ligands L [L = 2.6-(ArNCR1)2C5H3N] is reported.
Abstract: The synthesis, characterization, and ethylene polymerization behavior of a series of iron and cobalt halide complexes, LMXn (M = Fe, X = Cl, n = 2, 3, X = Br, n = 2; M = Co, X = Cl, n = 2), bearing chelating 2,6-bis(imino)pyridyl ligands L [L = 2,6-(ArNCR1)2C5H3N] is reported. X-ray diffraction studies show the geometry at the metal centers to be either distorted square pyramidal or distorted trigonal bipyramidal. Treatment of the complexes LMXn with methylaluminoxane (MAO) leads to highly active ethylene polymerization catalysts converting ethylene to highly linear polyethylene (PE). LFeX2 precatalysts with ketimine ligands (R1 = Me) are approximately an order of magnitude more active than precatalysts with aldimine ligands (R1 = H). Catalyst productivities in the range 3750−20600 g/mmol·h·bar are observed for Fe-based ketimine catalysts, while Co ketimine systems display activities of 450−1740 g/mmol·h·bar. Molecular weights (Mw) of the polymers produced are in the range 14000−611000. Changing reaction ...

970 citations

Journal ArticleDOI
TL;DR: A series of bis(imino)pyridyliron and -cobalt complexes with at least one small ortho substituent, as well as Ar=biphenyl and Ar=naphthyl, has been synthesized as mentioned in this paper.
Abstract: A series of bis(imino)pyridyliron and -cobalt complexes [[2,6-(CR=NAr)2C5H3N]MX2] (R=H, Me; M=Fe, Co; X=Cl, Br) 8-16 containing imino-aryl rings (Ar) with at least one small ortho substituent, as well as Ar=biphenyl and Ar=naphthyl, has been synthesised. Crystallographic analyses of complexes 9 (Ar = 2,3-dimethylphenyl), 13 and 14 (Ar= biphenyl; X= Cl or Br, respectively) reveal a distorted trigonal-bipyramidal geometry in the solid state. These complexes, in combination with methyl aluminoxane (MAO), are active catalysts for the oligomerisation of ethylene, yielding >99% linear alpha-olefin mixtures that follow a Schulz-Flory distribution. Iron ketimine (R = Me) precatalysts give the highest activities and a greater alpha-value than their aldimine (R = H) analogues. Cobalt precatalysts follow a similar trend, though their activities are almost two orders of magnitude lower than those of the corresponding iron catalysts. Ethylene pressure studies on cobalt precatalyst 15 reveal a first-order dependence on ethylene for both the rate of propagation and the rate of chain transfer, and a pressure independence of the alpha value.

335 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Dehydroisomerization of Limonene and Terpenes To Produce Cymene 2481 4.2.1.
Abstract: 3.2.3. Hydroformylation 2467 3.2.4. Dimerization 2468 3.2.5. Oxidative Cleavage and Ozonolysis 2469 3.2.6. Metathesis 2470 4. Terpenes 2472 4.1. Pinene 2472 4.1.1. Isomerization: R-Pinene 2472 4.1.2. Epoxidation of R-Pinene 2475 4.1.3. Isomerization of R-Pinene Oxide 2477 4.1.4. Hydration of R-Pinene: R-Terpineol 2478 4.1.5. Dehydroisomerization 2479 4.2. Limonene 2480 4.2.1. Isomerization 2480 4.2.2. Epoxidation: Limonene Oxide 2480 4.2.3. Isomerization of Limonene Oxide 2481 4.2.4. Dehydroisomerization of Limonene and Terpenes To Produce Cymene 2481

5,127 citations

Journal ArticleDOI
TL;DR: Biomass is an important feedstock for the renewable production of fuels, chemicals, and energy, and it recently surpassed hydroelectric energy as the largest domestic source of renewable energy.
Abstract: Biomass is an important feedstock for the renewable production of fuels, chemicals, and energy. As of 2005, over 3% of the total energy consumption in the United States was supplied by biomass, and it recently surpassed hydroelectric energy as the largest domestic source of renewable energy. Similarly, the European Union received 66.1% of its renewable energy from biomass, which thus surpassed the total combined contribution from hydropower, wind power, geothermal energy, and solar power. In addition to energy, the production of chemicals from biomass is also essential; indeed, the only renewable source of liquid transportation fuels is currently obtained from biomass.

3,644 citations

Journal ArticleDOI
TL;DR: New methods for the synthesis of complexes with N-heterocyclic carbene ligands such as the oxidative addition or the metal atom template controlled cyclized isocyanides have been developed recently.
Abstract: The chemistry of heterocyclic carbenes has experienced a rapid development over the last years. In addition to the imidazolin-2-ylidenes, a large number of cyclic diaminocarbenes with different ring sizes have been described. Aside from diaminocarbenes, P-heterocyclic carbenes, and derivatives with only one, or even no heteroatom within the carbene ring are known. New methods for the synthesis of complexes with N-heterocyclic carbene ligands such as the oxidative addition or the metal atom template controlled cyclization of β-functionalized isocyanides have been developed recently. This review summarizes the new developments regarding the synthesis of N-heterocyclic carbenes and their metal complexes.

2,454 citations