scispace - formally typeset
Search or ask a question
Author

George Karakiulakis

Bio: George Karakiulakis is an academic researcher from Aristotle University of Thessaloniki. The author has contributed to research in topics: Extracellular matrix & Platelet-derived growth factor receptor. The author has an hindex of 27, co-authored 78 publications receiving 4887 citations. Previous affiliations of George Karakiulakis include National and Kapodistrian University of Athens & University Hospital of Basel.


Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that patients with cardiac diseases, hypertension, or diabetes, who are treated with ACE2increasing drugs, are at higher risk for severe COVID-19 infection and, therefore, should be monitored for ACE2-modulating medications, such as ACE inhibitors or ARBs.

2,332 citations

Journal ArticleDOI
TL;DR: Understanding the metabolism of HA in the different layers of the skin and the interactions of HA with other skin components will facilitate the ability to modulate skin moisture in a rational manner.
Abstract: Skin aging is a multifactorial process consisting of two distinct and independent mechanisms: intrinsic and extrinsic aging. Youthful skin retains its turgor, resilience and pliability, among others, due to its high content of water. Daily external injury, in addition to the normal process of aging, causes loss of moisture. The key molecule involved in skin moisture is hyaluronic acid (HA) that has unique capacity in retaining water. There are multiple sites for the control of HA synthesis, deposition, cell and protein association and degradation, reflecting the complexity of HA metabolism. The enzymes that synthesize or catabolize HA and HA receptors responsible for many of the functions of HA are all multigene families with distinct patterns of tissue expression. Understanding the metabolism of HA in the different layers of the skin and the interactions of HA with other skin components will facilitate the ability to modulate skin moisture in a rational manner.

579 citations

Journal ArticleDOI
TL;DR: The findings indicate that the capacity of corticosteroids to reduce edema or to prevent new blood vessel formation may be attributed, at least in part to the ability of these agents to abolish the expression of VEGF.

470 citations

Journal ArticleDOI
TL;DR: A significant anti-fibrotic effect of nintedanib in IPF fibroblasts is demonstrated, which consists of the drug’s anti-proliferative capacity, and on its effect on the extracellular matrix, the degradation of which seems to be enhanced.
Abstract: Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. The kinase inhibitor nintedanib specific for vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR) and fibroblast growth factor receptor (FGFR) significantly reduced the rate of decline of forced vital capacity versus placebo. To determine the in vitro effect of nintedanib on primary human lung fibroblasts. Methods: Fibroblasts were isolated from lungs of IPF patients and from non-fibrotic controls. We assessed the effect of VEGF, PDGF-BB and basic FGF (bFGF) ± nintedanib on: (i) expression/activation of VEGFR, PDGFR, and FGFR, (ii) cell proliferation, secretion of (iii) matrix metalloproteinases (MMP), (iv) tissue inhibitor of metalloproteinase (TIMP), and (v) collagen. IPF fibroblasts expressed higher levels of PDGFR and FGFR than controls. PDGF-BB, bFGF, and VEGF caused a pro-proliferative effect which was prevented by nintedanib. Nintedanib enhanced the expression of pro-MMP-2, and inhibited the expression of TIMP-2. Transforming growth factor-beta-induced secretion of collagens was inhibited by nintedanib. Our data demonstrate a significant anti-fibrotic effect of nintedanib in IPF fibroblasts. This effect consists of the drug’s anti-proliferative capacity, and on its effect on the extracellular matrix, the degradation of which seems to be enhanced.

185 citations

Journal ArticleDOI
TL;DR: The results indicate that ISMN and ISDN inhibit angiogenesis and tumour growth and metastasis in an animal tumour model, and it is considered that these nitrovasodilators which are widely used therapeutically and have well characterized pharmacological profiles, may also possess antitumour properties in the clinic.
Abstract: 1. The effect of the nitric oxide (NO)-producing nitrovasodilators isosorbide mononitrate (ISMN) and isosorbide dinitrate (ISDN) were assessed on (a) the in vivo model of angiogenesis of the chick chorioallantoic membrane (CAM) and (b) on the growth and metastatic properties of the Lewis Lung carcinoma (LLC) in mice. 2. Isosorbide 5-mononitrate (ISMN) and isosorbide dinitrate (ISDN), inhibited angiogenesis in the CAM dose-dependently. ISMN was more potent in inhibiting this process. Both compounds were capable of completely reversing the angiogenic effect of alpha-thrombin. These effects of ISMN and ISDN on angiogenesis were comparable to those previously observed with sodium nitroprusside which generates NO non-enzymatically. 3. Mice, implanted intramuscularly with LLC, received daily i.p. injections of ISMN for 14 days resulting in a significant decrease in the size of the primary tumour and a reduction in the number and size of metastatic foci in the lungs. ISDN had a similar but less pronounced effect than that observed with ISMN. 4. Addition of ISMN or ISDN to cultures of bovine, rabbit and human endothelial cells and to cultures of LLC cells had no effect on their growth characteristics. 5. These results indicate that ISMN and ISDN inhibit angiogenesis and tumor growth and metastasis in an animal tumour model. The possibility should therefore be considered that these nitrovasodilators which are widely used therapeutically and have well characterized pharmacological profiles, may also possess antitumour properties in the clinic.

167 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a Support Vector Machine (SVM) method based on recursive feature elimination (RFE) was proposed to select a small subset of genes from broad patterns of gene expression data, recorded on DNA micro-arrays.
Abstract: DNA micro-arrays now permit scientists to screen thousands of genes simultaneously and determine whether those genes are active, hyperactive or silent in normal or cancerous tissue. Because these new micro-array devices generate bewildering amounts of raw data, new analytical methods must be developed to sort out whether cancer tissues have distinctive signatures of gene expression over normal tissues or other types of cancer tissues. In this paper, we address the problem of selection of a small subset of genes from broad patterns of gene expression data, recorded on DNA micro-arrays. Using available training examples from cancer and normal patients, we build a classifier suitable for genetic diagnosis, as well as drug discovery. Previous attempts to address this problem select genes with correlation techniques. We propose a new method of gene selection utilizing Support Vector Machine methods based on Recursive Feature Elimination (RFE). We demonstrate experimentally that the genes selected by our techniques yield better classification performance and are biologically relevant to cancer. In contrast with the baseline method, our method eliminates gene redundancy automatically and yields better and more compact gene subsets. In patients with leukemia our method discovered 2 genes that yield zero leave-one-out error, while 64 genes are necessary for the baseline method to get the best result (one leave-one-out error). In the colon cancer database, using only 4 genes our method is 98% accurate, while the baseline method is only 86% accurate.

7,939 citations

01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal ArticleDOI
TL;DR: A review of the specific roles of these growth factors and cytokines during wound healing can be found in this article, where patients are treated by three growth factors: PDGF-BB, bFGF, and GM-CSF.
Abstract: Wound healing is an evolutionarily conserved, complex, multicellular process that, in skin, aims at barrier restoration. This process involves the coordinated efforts of several cell types including keratinocytes, fibroblasts, endothelial cells, macrophages, and platelets. The migration, infiltration, proliferation, and differentiation of these cells will culminate in an inflammatory response, the formation of new tissue and ultimately wound closure. This complex process is executed and regulated by an equally complex signaling network involving numerous growth factors, cytokines and chemokines. Of particular importance is the epidermal growth factor (EGF) family, transforming growth factor beta (TGF-beta) family, fibroblast growth factor (FGF) family, vascular endothelial growth factor (VEGF), granulocyte macrophage colony stimulating factor (GM-CSF), platelet-derived growth factor (PDGF), connective tissue growth factor (CTGF), interleukin (IL) family, and tumor necrosis factor-alpha family. Currently, patients are treated by three growth factors: PDGF-BB, bFGF, and GM-CSF. Only PDGF-BB has successfully completed randomized clinical trials in the Unites States. With gene therapy now in clinical trial and the discovery of biodegradable polymers, fibrin mesh, and human collagen serving as potential delivery systems other growth factors may soon be available to patients. This review will focus on the specific roles of these growth factors and cytokines during the wound healing process.

2,617 citations

Journal ArticleDOI
TL;DR: The extrapulmonary organ-specific pathophysiology, presentations and management considerations for patients with COVID-19 are reviewed to aid clinicians and scientists in recognizing and monitoring the spectrum of manifestations, and in developing research priorities and therapeutic strategies for all organ systems involved.
Abstract: Although COVID-19 is most well known for causing substantial respiratory pathology, it can also result in several extrapulmonary manifestations. These conditions include thrombotic complications, myocardial dysfunction and arrhythmia, acute coronary syndromes, acute kidney injury, gastrointestinal symptoms, hepatocellular injury, hyperglycemia and ketosis, neurologic illnesses, ocular symptoms, and dermatologic complications. Given that ACE2, the entry receptor for the causative coronavirus SARS-CoV-2, is expressed in multiple extrapulmonary tissues, direct viral tissue damage is a plausible mechanism of injury. In addition, endothelial damage and thromboinflammation, dysregulation of immune responses, and maladaptation of ACE2-related pathways might all contribute to these extrapulmonary manifestations of COVID-19. Here we review the extrapulmonary organ-specific pathophysiology, presentations and management considerations for patients with COVID-19 to aid clinicians and scientists in recognizing and monitoring the spectrum of manifestations, and in developing research priorities and therapeutic strategies for all organ systems involved.

2,113 citations

Journal ArticleDOI
TL;DR: RAAS Inhibitors in Patients with Covid-19 show low levels of renin–angiotensin-converting enzyme 2 levels and activity in humans, but the effects are still uncertain.
Abstract: RAAS Inhibitors in Patients with Covid-19 The effects of renin–angiotensin–aldosterone system blockers on angiotensin-converting enzyme 2 levels and activity in humans are uncertain. The authors hy...

1,687 citations