scispace - formally typeset
Search or ask a question
Author

George L. Mutter

Bio: George L. Mutter is an academic researcher from Brigham and Women's Hospital. The author has contributed to research in topics: Endometrial intraepithelial neoplasia & Endometrial cancer. The author has an hindex of 55, co-authored 145 publications receiving 10954 citations. Previous affiliations of George L. Mutter include NewYork–Presbyterian Hospital & Case Western Reserve University.


Papers
More filters
Journal ArticleDOI
TL;DR: Loss of PTEN function by mutational or other mechanisms is an early event in endometrial tumorigenesis that may occur in response to known endocrine risk factors and offers an informative immunohistochemical biomarker for premalignant disease.
Abstract: Background: PTEN tumor suppressor gene mutations are the most frequent genetic lesions in endometrial adenocarcinomas of the endometrioid subtype. Testing the hypothesis that altered PTEN function precedes the appearance of endometrial adenocarcinoma has been difficult, however, partly because of uncertainties in precancer diagnosis. Methods: Two series of endometrial cancer and precancer (endometrial intraepithelial neoplasia, as diagnosed by computerized morphometric analysis) tissue samples were studied, one for PTEN mutations by the use of denaturing gradient gel electrophoresis and another for PTEN protein expression by immunohistochemistry. Endometria altered by high estrogen levels that are unopposed by progestins-conditions known to increase cancer risk-were also studied by immunohistochemistry. Fisher's exact test was used for statistical analysis. Results: The PTEN mutation rate was 83% (25 of 30) in endometrioid endometrial adenocarcinomas and 55% (16 of 29) in precancers, and the difference in number of mutations was statistically significant (two-sided P = .025). No normal endometria showed PTEN mutations. Although most precancers and cancers had a mutation in only one PTEN allele, endometrioid endometrial adenocarcinomas showed complete loss of PTEN protein expression in 61% (20 of 33) of cases, and 97% (32 of 33) showed at least some diminution in expression. Cancers and most precancers exhibited contiguous groups of PTEN-negative glands, while endometria altered by unopposed estrogens showed isolated PTEN-negative glands. Conclusions: Loss of PTEN function by mutational or other mechanisms is an early event in endometrial tumorigenesis that may occur in response to known endocrine risk factors and offers an informative immunohistochemical biomarker for premalignant disease. Individual PTEN-negative glands in estrogen-exposed endometria are the earliest recognizable stage of endometrial carcinogenesis. Proliferation into dense clusters that form discrete premalignant lesions follows.

781 citations

Journal ArticleDOI
TL;DR: The precursor lesion of type I endometrioid cancer and the role of genetics and estrogen in its progression are defined and the genetic aspects of endometrial carcinogenesis and progression are reviewed.
Abstract: Endometrial cancer is the most common gynecological malignancy, with 41,000 new cases projected in the United States for 2006. Two different clinicopathologic subtypes are recognized: the estrogen-related (type I, endometrioid) and the non-estrogen-related types (type II, nonendometrioid such as papillary serous and clear cell). The morphologic differences in these cancers are mirrored in their molecular genetic profile with type I showing defects in DNA-mismatch repair and mutations in PTEN, K-ras, and beta-catenin, and type II showing aneuploidy and p53 mutations. This article reviews the genetic aspects of endometrial carcinogenesis and progression. We will define the precursor lesion of type I endometrioid cancer and the role of genetics and estrogen in its progression.

501 citations

Journal ArticleDOI
TL;DR: A compendium of gene expression in normal human tissues suitable as a reference for defining basic organ systems biology is created and subsets of tissue-selective genes are identified that define key biological processes characterizing each organ.
Abstract: This study creates a compendium of gene expression in normal human tissues suitable as a reference for defining basic organ systems biology. Using oligonucleotide microarrays, we analyze 59 samples representing 19 distinct tissue types. Of approximately 7,000 genes analyzed, 451 genes are expressed in all tissue types and designated as housekeeping genes. These genes display significant variation in expression levels among tissues and are sufficient for discerning tissue-specific expression signatures, indicative of fundamental differences in biochemical processes. In addition, subsets of tissue-selective genes are identified that define key biological processes characterizing each organ. This compendium highlights similarities and differences among organ systems and different individuals and also provides a publicly available resource (Human Gene Expression Index, the HuGE Index, http://www.hugeindex.org) for future studies of pathophysiology.

479 citations

Journal ArticleDOI
29 Mar 1990-Nature
TL;DR: It is shown that GF-1 is expressed in two other haematopoietic lineages, megakaryocytes and bone marrow-derived mast cells, and these findings are consistent with results from haem atopoetic progenitor culture which suggest a relationship between erythroid,Megakaryocytic and mast cell lineages and imply thatGF-1 was expressed in committed multipotential cells and their progeny.
Abstract: The nuclear factor GF-1 (also known as NF-E1, Eryf-1; refs 1-3 respectively) is important in regulation of the transcription of globin and other genes that are specifically expressed in erythroid cells. We have previously shown that GF-1 of both mouse and human origin is a 413-amino-acid polypeptide with two novel zinc-finger domains whose expression is restricted to erythroid cells. Using in situ hybridization of mouse bone marrow cells and northern blot analysis of purified cell populations and permanent cell lines, we show here that GF-1 is expressed in two other hematopoietic lineages, megakaryocytes and bone marrow-derived mast cells. Our findings are consistent with results from hematopoietic progenitor culture which suggest a relationship between erythroid, megakaryocytic and mast cell lineages, and imply that GF-1 is expressed in committed multipotential cells and their progeny. Hence, the mere presence of this transcription factor is unlikely to be sufficient to programme differentiation of a single haematopoietic lineage. GF-1 may regulate the transcription of not only erythroid genes, but also many genes characteristic of megakaryocytes and mast cells, or genes shared among these lineages.

459 citations

Journal ArticleDOI
TL;DR: PTEN expression was analyzed in 33 sporadic primary breast carcinoma samples using immunohistochemistry and correlated this to structural studies at the molecular level, finding that an epigenetic phenomenon such as hypermethylation, -ecreased protein synthesis or increased protein degradation may be involved.
Abstract: Germline mutations in PTEN , encoding a dual-specificity phosphatase on 10q23.3, cause Cowden syndrome (CS), which is characterized by a high risk of breast and thyroid cancers. Loss of heterozygosity of 10q22–24 markers and somatic PTEN mutations have been found to a greater or lesser extent in a variety of sporadic component and noncomponent cancers of CS. Among several series of sporadic breast carcinomas, the frequency of loss of flanking markers around PTEN is approximately 30 to 40%, and the somatic intragenic PTEN mutation frequency is PTEN deletion but no structural alteration of the remaining allele. Thus, in these cases, an epigenetic phenomenon such as hypermethylation, -ecreased protein synthesis or increased protein degradation may be involved. In the cases with reduced staining, 5 of 6 had hemizygous PTEN deletion and 1 did not have any structural abnormality. Finally, clinicopathological features were analyzed against PTEN protein expression. Three of the 5 PTEN immunostain-negative carcinomas were also both estrogen and progesterone receptor-negative, whereas only 5 of 22 of the PTEN-positive group were double receptor-negative. The significance of this last observation requires further study.

404 citations


Cited by
More filters
Journal ArticleDOI
31 Jan 2002-Nature
TL;DR: DNA microarray analysis on primary breast tumours of 117 young patients is used and supervised classification is applied to identify a gene expression signature strongly predictive of a short interval to distant metastases (‘poor prognosis’ signature) in patients without tumour cells in local lymph nodes at diagnosis, providing a strategy to select patients who would benefit from adjuvant therapy.
Abstract: Breast cancer patients with the same stage of disease can have markedly different treatment responses and overall outcome. The strongest predictors for metastases (for example, lymph node status and histological grade) fail to classify accurately breast tumours according to their clinical behaviour. Chemotherapy or hormonal therapy reduces the risk of distant metastases by approximately one-third; however, 70-80% of patients receiving this treatment would have survived without it. None of the signatures of breast cancer gene expression reported to date allow for patient-tailored therapy strategies. Here we used DNA microarray analysis on primary breast tumours of 117 young patients, and applied supervised classification to identify a gene expression signature strongly predictive of a short interval to distant metastases ('poor prognosis' signature) in patients without tumour cells in local lymph nodes at diagnosis (lymph node negative). In addition, we established a signature that identifies tumours of BRCA1 carriers. The poor prognosis signature consists of genes regulating cell cycle, invasion, metastasis and angiogenesis. This gene expression profile will outperform all currently used clinical parameters in predicting disease outcome. Our findings provide a strategy to select patients who would benefit from adjuvant therapy.

9,664 citations

Journal ArticleDOI
TL;DR: This review discusses patterns of DNA methylation and chromatin structure in neoplasia and the molecular alterations that might cause them and/or underlie altered gene expression in cancer.
Abstract: Patterns of DNA methylation and chromatin structure are profoundly altered in neoplasia and include genome-wide losses of, and regional gains in, DNA methylation. The recent explosion in our knowledge of how chromatin organization modulates gene transcription has further highlighted the importance of epigenetic mechanisms in the initiation and progression of human cancer. These epigenetic changes -- in particular, aberrant promoter hypermethylation that is associated with inappropriate gene silencing -- affect virtually every step in tumour progression. In this review, we discuss these epigenetic events and the molecular alterations that might cause them and/or underlie altered gene expression in cancer.

5,492 citations

Journal ArticleDOI
TL;DR: Fibroblasts are a key determinant in the malignant progression of cancer and represent an important target for cancer therapies.
Abstract: Tumours are known as wounds that do not heal - this implies that cells that are involved in angiogenesis and the response to injury, such as endothelial cells and fibroblasts, have a prominent role in the progression, growth and spread of cancers. Fibroblasts are associated with cancer cells at all stages of cancer progression, and their structural and functional contributions to this process are beginning to emerge. Their production of growth factors, chemokines and extracellular matrix facilitates the angiogenic recruitment of endothelial cells and pericytes. Fibroblasts are therefore a key determinant in the malignant progression of cancer and represent an important target for cancer therapies.

4,232 citations

Journal ArticleDOI
06 May 2005-Cell
TL;DR: Using a coimplantation tumor xenograft model, it is demonstrated that carcinoma-associated fibroblasts extracted from human breast carcinomas promote the growth of admixed breast carcinoma cells significantly more than do normal mammaries derived from the same patients.

3,373 citations

Journal ArticleDOI
TL;DR: The mitochondria provide a direct link between the authors' environment and their genes and the mtDNA variants that permitted their forbears to energetically adapt to their ancestral homes are influencing their health today.
Abstract: Life is the interplay between structure and energy, yet the role of energy deficiency in human disease has been poorly explored by modern medicine. Since the mitochondria use oxidative phosphorylation (OXPHOS) to convert dietary calories into usable energy, generating reactive oxygen species (ROS) as a toxic by-product, I hypothesize that mitochondrial dysfunction plays a central role in a wide range of age-related disorders and various forms of cancer. Because mitochondrial DNA (mtDNA) is present in thousands of copies per cell and encodes essential genes for energy production, I propose that the delayed-onset and progressive course of the agerelated diseases results from the accumulation of somatic mutations in the mtDNAs of post-mitotic tissues. The tissue-specific manifestations of these diseases may result from the varying energetic roles and needs of the different tissues. The variation in the individual and regional predisposition to degenerative diseases and cancer may result from the interaction of modern dietary caloric intake and ancient mitochondrial genetic polymorphisms. Therefore the mitochondria provide a direct link between our environment and our genes and the mtDNA variants that permitted our forbears to energetically adapt to their ancestral homes are influencing our health today.

3,016 citations