scispace - formally typeset
Search or ask a question
Author

George Lykotrafitis

Bio: George Lykotrafitis is an academic researcher from University of Connecticut. The author has contributed to research in topics: Spectrin & BCAM. The author has an hindex of 23, co-authored 57 publications receiving 3064 citations. Previous affiliations of George Lykotrafitis include Massachusetts Institute of Technology & National Technical University of Athens.


Papers
More filters
Journal ArticleDOI
TL;DR: A thermodynamic model for receptor-mediated endocytosis of ligand-coated NPs is presented, and an optimal NP radius is identified at which the cellular uptake reaches a maximum of several thousand at physiologically relevant parameters, and it is shown that the cell uptake is regulated by membrane tension, and can be elaborately controlled by particle size.
Abstract: Recent advances in nanotechnology have stimulated novel applications in biomedicine where nanoparticles (NPs) are used to achieve drug delivery and photodynamic therapy. In chemotherapeutic cancer treatment, tumor-specific drug delivery is a topic of considerable research interest for achieving enhanced therapeutic efficacy and for mitigating adverse side effects. Most anticancer agents are incapable of distinguishing between benign and malignant cells, and consequently cause systematic toxicity during cancer treatment. Owing to their small size, ligand-coated NPs can be efficiently directed toward, and subsequently internalized by tumor cells through ligand–receptor recognition and interaction (see Fig. 1), thereby offering an effective approach for specific targeting of tumor cells. For example, branching dendrimers have recently been identified as potential candidates for site-specific drug carriers.[2] NPs have also been exploited in other biomedical applications such as bioimaging[3,4] and biosensing.[5,6] It has been demonstrated that florescent quantum dots are efficient in tumor cell imaging, recognition, and tracking,[3,4] and that gold NPs are capable of detecting small proteins.[5,6] To enable rational design of such NP-based agents, it is essential to understand the underlying mechanisms that govern the transmembrane transport and invagination of NPs in biological cells. In this communication, we present a thermodynamic model for receptor-mediated endocytosis of ligand-coated NPs. We identify an optimal NP radius at which the cellular uptake reaches a maximum of several thousand at physiologically relevant parameters, and we show that the cellular uptake of NPs is regulated by membrane tension, and can be elaborately controlled by particle size. The optimal NP radius for endocytosis is on the order of 25−30 nm, which is in good agreement with prior estimates.[7]

908 citations

Journal ArticleDOI
TL;DR: Two intrinsic indicators: the refractive index and membrane fluctuations in P. falciparum-invaded human RBCs are investigated and offer potential avenues for identifying, through cell membrane dynamics, pathological states that cause or accompany human diseases.
Abstract: Parasitization by malaria-inducing Plasmodium falciparum leads to structural, biochemical, and mechanical modifications to the host red blood cells (RBCs). To study these modifications, we investigate two intrinsic indicators: the refractive index and membrane fluctuations in P. falciparum-invaded human RBCs (Pf-RBCs). We report experimental connections between these intrinsic indicators and pathological states. By employing two noninvasive optical techniques, tomographic phase microscopy and diffraction phase microscopy, we extract three-dimensional maps of refractive index and nanoscale cell membrane fluctuations in isolated RBCs. Our systematic experiments cover all intraerythrocytic stages of parasite development under physiological and febrile temperatures. These findings offer potential, and sufficiently general, avenues for identifying, through cell membrane dynamics, pathological states that cause or accompany human diseases.

655 citations

Journal ArticleDOI
TL;DR: This cytoskeletal dynamics model offers a means to resolve long-standing questions regarding the reference state used in RBC elasticity theory for determining the equilibrium shape and deformation response and offers mechanistic insights into the onset of plasticity and void percolation in cytoskeleton.
Abstract: The human erythrocyte (red blood cell, RBC) demonstrates extraordinary ability to undergo reversible large deformation and fluidity. Such mechanical response cannot be consistently rationalized on the basis of fixed connectivity of the cell cytoskeleton that comprises the spectrin molecular network tethered to phospholipid membrane. Active topological remodeling of spectrin network has been postulated, although detailed models of such dynamic reorganization are presently unavailable. Here we present a coarse-grained cytoskeletal dynamics simulation with breakable protein associations to elucidate the roles of shear stress, specific chemical agents, and thermal fluctuations in cytoskeleton remodeling. We demonstrate a clear solid-to-fluid transition depending on the metabolic energy influx. The solid network's plastic deformation also manifests creep and yield regimes depending on the strain rate. This cytoskeletal dynamics model offers a means to resolve long-standing questions regarding the reference state used in RBC elasticity theory for determining the equilibrium shape and deformation response. In addition, the simulations offer mechanistic insights into the onset of plasticity and void percolation in cytoskeleton. These phenomena may have implication for RBC membrane loss and shape change in the context of hereditary hemolytic disorders such as spherocytosis and elliptocytosis.

249 citations

Journal ArticleDOI
TL;DR: Maugin and Parker as mentioned in this paper showed that torsional surface waves do exist in a homogeneous gradient-elastic half-space, which is in contrast with the well-known result of the classical theory of linear elasticity.

137 citations

Journal ArticleDOI
TL;DR: AFM was employed to measure the stiffness of abnormal human red blood cells from human subjects with the genotype for sickle cell trait and showed that Young's modulus of pathological erythrocytes was approximately three times higher than in normal cells.

121 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The rationales for these studies, the current progress in studies of the interactions of nanomaterials with biological systems, and a perspective on the long-term implications of these findings are provided.
Abstract: An understanding of the interactions between nanoparticles and biological systems is of significant interest. Studies aimed at correlating the properties of nanomaterials such as size, shape, chemical functionality, surface charge, and composition with biomolecular signaling, biological kinetics, transportation, and toxicity in both cell culture and animal experiments are under way. These fundamental studies will provide a foundation for engineering the next generation of nanoscale devices. Here, we provide rationales for these studies, review the current progress in studies of the interactions of nanomaterials with biological systems, and provide a perspective on the long-term implications of these findings.

2,969 citations

Journal ArticleDOI
TL;DR: It is anticipated that precisely engineered nanoparticles will emerge as the next-generation platform for cancer therapy and many other biomedical applications.
Abstract: In medicine, nanotechnology has sparked a rapidly growing interest as it promises to solve a number of issues associated with conventional therapeutic agents, including their poor water solubility (at least, for most anticancer drugs), lack of targeting capability, nonspecific distribution, systemic toxicity, and low therapeutic index. Over the past several decades, remarkable progress has been made in the development and application of engineered nanoparticles to treat cancer more effectively. For example, therapeutic agents have been integrated with nanoparticles engineered with optimal sizes, shapes, and surface properties to increase their solubility, prolong their circulation half-life, improve their biodistribution, and reduce their immunogenicity. Nanoparticles and their payloads have also been favorably delivered into tumors by taking advantage of the pathophysiological conditions, such as the enhanced permeability and retention effect, and the spatial variations in the pH value. Additionally, targeting ligands (e.g., small organic molecules, peptides, antibodies, and nucleic acids) have been added to the surface of nanoparticles to specifically target cancerous cells through selective binding to the receptors overexpressed on their surface. Furthermore, it has been demonstrated that multiple types of therapeutic drugs and/or diagnostic agents (e.g., contrast agents) could be delivered through the same carrier to enable combination therapy with a potential to overcome multidrug resistance, and real-time readout on the treatment efficacy. It is anticipated that precisely engineered nanoparticles will emerge as the next-generation platform for cancer therapy and many other biomedical applications.

1,603 citations

Journal ArticleDOI
TL;DR: This study establishes principles for the rational design of clinically useful nanomaterials by investigating the role of size and surface chemistry in mediating serum protein adsorption to gold nanoparticles and their subsequent uptake by macrophages.
Abstract: Delivery and toxicity are critical issues facing nanomedicine research. Currently, there is limited understanding and connection between the physicochemical properties of a nanomaterial and its interactions with a physiological system. As a result, it remains unclear how to optimally synthesize and chemically modify nanomaterials for in vivo applications. It has been suggested that the physicochemical properties of a nanomaterial after synthesis, known as its “synthetic identity”, are not what a cell encounters in vivo. Adsorption of blood components and interactions with phagocytes can modify the size, aggregation state, and interfacial composition of a nanomaterial, giving it a distinct “biological identity”. Here, we investigate the role of size and surface chemistry in mediating serum protein adsorption to gold nanoparticles and their subsequent uptake by macrophages. Using label-free liquid chromatography tandem mass spectrometry, we find that over 70 different serum proteins are heterogeneously adso...

1,588 citations