scispace - formally typeset
Search or ask a question
Author

George M. Sheldrick

Other affiliations: University of Regensburg
Bio: George M. Sheldrick is an academic researcher from University of Göttingen. The author has contributed to research in topics: Crystal structure & Bond length. The author has an hindex of 58, co-authored 791 publications receiving 151229 citations. Previous affiliations of George M. Sheldrick include University of Regensburg.


Papers
More filters
Journal ArticleDOI
TL;DR: A new aspherical scattering factor formalism was implemented in SHELXL that relies on Gaussian functions and can optionally complement the independent atom model to take into account the deformation of electron-density distribution due to chemical bonding and lone pairs.
Abstract: A new aspherical scattering factor formalism has been implemented in the crystallographic least-squares refinement program SHELXL. The formalism relies on Gaussian functions and can optionally complement the independent atom model to take into account the deformation of electron-density distribution due to chemical bonding and lone pairs. Asphericity contributions were derived from the electron density obtained from quantum-chemical density functional theory computations of suitable model compounds that contain particular chemical environments, as defined by the invariom formalism. Thanks to a new algorithm, invariom assignment for refinement in SHELXL is automated. A suitable parameterization for each chemical environment within the new model was achieved by metaheuristics. Figures of merit, precision and accuracy of crystallographic least-squares refinements improve significantly upon using the new model.

44 citations

Journal ArticleDOI
TL;DR: The bisadduct (cAAC)2NiIICl2 [1] was directly synthesized by treating cAAC with NiCl2 as mentioned in this paper, and it was shown that an intermediate containing NiIII was more favored than one with NiIV.
Abstract: The bisadduct (cAAC)2NiIICl2 [1; cAAC = cyclic (alkyl)(amino)carbene] was directly synthesized by treating cAAC with NiCl2. Compound 1 was reduced to (cAAC)2Ni0 (2) by using lithium diisopropylamide or KC8. Crystals of 2 were stable under an inert gas for several months and decomposed upon heating above 165 °C. On the basis of the calculated natural bond orbital charge values of the nickel atom in 2, the oxidation state of nickel was determined to be between NiI and Ni0 (+0.34). Theoretical calculations suggested a closed-shell singlet electronic configuration of 2 with little biradical character. Ab initio multiconfigurational C(R)ASSCF/CASPT2 calculations predicted a closed-shell singlet electronic configuration (Ni0), whereas excited spin states possessed NiI character with unpaired electrons on neighboring carbon atoms. The catalytic activity of complex 2 was investigated for the homocoupling of various unactivated aryl chlorides/fluorides. The biaryls were obtained in good yields at moderate temperature. Theoretical studies showed that an intermediate containing NiIII was more favored than one with NiIV.

43 citations

Journal ArticleDOI
TL;DR: The temperature dependence of hydrogen U iso and parent U eq in the riding hydrogen model is investigated by neutron diffraction, aspherical-atom refinements and QM/MM and MO/MO cluster calculations.
Abstract: The temperature dependence of H-Uiso in N-acetyl-l-4-hydroxyproline monohydrate is investigated. Imposing a constant temperature-independent multiplier of 1.2 or 1.5 for the riding hydrogen model is found to be inaccurate, and severely underestimates H-Uiso below 100 K. Neutron diffraction data at temperatures of 9, 150, 200 and 250 K provide benchmark results for this study. X-ray diffraction data to high resolution, collected at temperatures of 9, 30, 50, 75, 100, 150, 200 and 250 K (synchrotron and home source), reproduce neutron results only when evaluated by aspherical-atom refinement models, since these take into account bonding and lone-pair electron density; both invariom and Hirshfeld-atom refinement models enable a more precise determination of the magnitude of H-atom displacements than independent-atom model refinements. Experimental efforts are complemented by computing displacement parameters following the TLS+ONIOM approach. A satisfactory agreement between all approaches is found.

42 citations

Journal ArticleDOI
TL;DR: Two examples of structures of obverse/reverse twins are presented and it will be shown how these two structures can be refined with the SHELXL program.
Abstract: Two examples of structures of obverse/reverse twins are presented. Example (1) is the structure of 2,2,4,4,6,6-hexa-tert-butylcyclotrisiloxane. It crystallizes in R3 macro c. Example (2) is the structure of [[Li(Me(3)Si)(3)CAlF(3)(thf)](3)LiF(thf)], tris[lithium tetrahydrofuran (trimethylsilyl)methyltrifluoroaluminate]lithium fluoride tetrahydrofuran. It crystallizes in R3. Additional to the obverse/reverse twinning this structure shows merohedral twinning. It will be shown how these two structures can be refined with the SHELXL program.

42 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper could serve as a general literature citation when one or more of the open-source SH ELX programs (and the Bruker AXS version SHELXTL) are employed in the course of a crystal-structure determination.
Abstract: An account is given of the development of the SHELX system of computer programs from SHELX-76 to the present day. In addition to identifying useful innovations that have come into general use through their implementation in SHELX, a critical analysis is presented of the less-successful features, missed opportunities and desirable improvements for future releases of the software. An attempt is made to understand how a program originally designed for photographic intensity data, punched cards and computers over 10000 times slower than an average modern personal computer has managed to survive for so long. SHELXL is the most widely used program for small-molecule refinement and SHELXS and SHELXD are often employed for structure solution despite the availability of objectively superior programs. SHELXL also finds a niche for the refinement of macromolecules against high-resolution or twinned data; SHELXPRO acts as an interface for macromolecular applications. SHELXC, SHELXD and SHELXE are proving useful for the experimental phasing of macromolecules, especially because they are fast and robust and so are often employed in pipelines for high-throughput phasing. This paper could serve as a general literature citation when one or more of the open-source SHELX programs (and the Bruker AXS version SHELXTL) are employed in the course of a crystal-structure determination.

81,116 citations

Journal ArticleDOI
TL;DR: New features added to the refinement program SHELXL since 2008 are described and explained.
Abstract: The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as `a CIF') containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors.

28,425 citations

Journal ArticleDOI
TL;DR: OLEX2 seamlessly links all aspects of the structure solution, refinement and publication process and presents them in a single workflow-driven package, with the ultimate goal of producing an application which will be useful to both chemists and crystallographers.
Abstract: New software, OLEX2, has been developed for the determination, visualization and analysis of molecular crystal structures. The software has a portable mouse-driven workflow-oriented and fully comprehensive graphical user interface for structure solution, refinement and report generation, as well as novel tools for structure analysis. OLEX2 seamlessly links all aspects of the structure solution, refinement and publication process and presents them in a single workflow-driven package, with the ultimate goal of producing an application which will be useful to both chemists and crystallographers.

19,990 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The PHENIX software for macromolecular structure determination is described and its uses and benefits are described.
Abstract: Macromolecular X-ray crystallography is routinely applied to understand biological processes at a molecular level. How­ever, significant time and effort are still required to solve and complete many of these structures because of the need for manual interpretation of complex numerical data using many software packages and the repeated use of interactive three-dimensional graphics. PHENIX has been developed to provide a comprehensive system for macromolecular crystallo­graphic structure solution with an emphasis on the automation of all procedures. This has relied on the development of algorithms that minimize or eliminate subjective input, the development of algorithms that automate procedures that are traditionally performed by hand and, finally, the development of a framework that allows a tight integration between the algorithms.

18,531 citations