scispace - formally typeset
Search or ask a question
Author

George M. Whitesides

Bio: George M. Whitesides is an academic researcher from Harvard University. The author has contributed to research in topics: Microcontact printing & Self-assembled monolayer. The author has an hindex of 240, co-authored 1739 publications receiving 269833 citations. Previous affiliations of George M. Whitesides include University of California, Davis & University of Texas at Austin.


Papers
More filters
Journal ArticleDOI
TL;DR: A theoretical model is introduced that identifies the tribological properties that determine the direction of locomotion and provides a starting point for identifying locomotion strategies that allow soft robots, like their natural invertebrate counterparts, to navigate a broad range of surfaces and terrains.
Abstract: A pneumatically-driven robot traverses surfaces with different traction by adopting an undulatory mode of locomotion. The robot is composed of soft elastomer (elastic modulus ~100 kPa), an inextensible but flexible neutral plane, and embedded pneumatic channels. In contrast to conventional robots and wheeled vehicles, the robot deforms elastically to make ground contact over a relatively large area, where interfacial tractions have a unique role in controlling both the speed and direction of locomotion. Here, we demonstrate that for the same undulatory gait, the robot will either move forward or backward depending on the ground composition. Building on mathematical principles of elasticity and friction, we introduce a theoretical model that identifies the tribological properties that determine the direction of locomotion. Though overlooked in the past, this tribology-controlled phenomenon represents a central feature of undulation on smooth, soft, and slippery surfaces. These insights provide a starting point for identifying locomotion strategies that allow soft robots, like their natural invertebrate counterparts, to navigate a broad range of surfaces and terrains.

79 citations

Journal ArticleDOI
26 Apr 1996-Science
TL;DR: The combination of ACE and protein charge ladders provides a tool for quantitatively examining the contributions of electrostatics to free energies of molecular recognition in biology.
Abstract: Electrostatic interactions between charges on ligands and charges on proteins that are remote from the binding interface can influence the free energy of binding (delta Gb) The binding affinities between charged ligands and the members of a charge ladder of bovine carbonic anhydrase (CAII) constructed by random acetylation of the amino groups on its surface were measured by affinity capillary electrophoresis (ACE) The values of delta Gb derived from this analysis correlated approximately linearly with the charge Opposite charges on the ligand and the members of the charge ladder of CAII were stabilizing; like charges were destabilizing The combination of ACE and protein charge ladders provides a tool for quantitatively examining the contributions of electrostatics to free energies of molecular recognition in biology

78 citations

Journal ArticleDOI
TL;DR: The fabrication of a fluidic device for detecting and separating diamagnetic materials that differ in density requires only gadolinium salts, two NdFeB magnets, and simple microfluidic devices fabricated from poly(dimethylsiloxane).
Abstract: This paper describes the fabrication of a fluidic device for detecting and separating diamagnetic materials that differ in density. The basis for the separation is the balance of the magnetic and gravitational forces on diamagnetic materials suspended in a paramagnetic medium. The paper demonstrates two applications of separations involving particles suspended in static fluids for detecting the following: (i) the binding of streptavidin to solid-supported biotin and (ii) the binding of citrate-capped gold nanoparticles to amine-modified polystyrene spheres. The paper also demonstrates a microfluidic device in which polystyrene particles that differ in their content of CH2Cl groups are continuously separated and collected in a flowing stream of an aqueous solution of GdCl3. The procedures for separation and detection described in this paper require only gadolinium salts, two NdFeB magnets, and simple microfluidic devices fabricated from poly(dimethylsiloxane). This device requires no power, has no moving ...

78 citations

Journal Article
TL;DR: A colorimetric method that integrates a paper-based immunoassay with a rapid, visible-light-induced polymerization to provide high visual contrast between a positive and a negative result and allows the user to decouple the capture of analyte from signal amplification and visualization steps.
Abstract: Diagnostic tests in resource-limited settings require technologies that are affordable and easy to use with minimal infrastructure. Colorimetric detection methods that produce results that are readable by eye, without reliance on specialized and expensive equipment, have great utility in these settings. We report a colorimetric method that integrates a paper-based immunoassay with a rapid, visible-light-induced polymerization to provide high visual contrast between a positive and a negative result. Using Plasmodium falciparum histidine-rich protein 2 as an example, we demonstrate that this method allows visual detection of proteins in complex matrices such as human serum and provides quantitative information regarding analyte levels when combined with cellphone-based imaging. It also allows the user to decouple the capture of analyte from signal amplification and visualization steps.

78 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
05 Feb 2009-Nature
TL;DR: The direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers is reported, and two different methods of patterning the films and transferring them to arbitrary substrates are presented, implying that the quality of graphene grown by chemical vapours is as high as mechanically cleaved graphene.
Abstract: Problems associated with large-scale pattern growth of graphene constitute one of the main obstacles to using this material in device applications. Recently, macroscopic-scale graphene films were prepared by two-dimensional assembly of graphene sheets chemically derived from graphite crystals and graphene oxides. However, the sheet resistance of these films was found to be much larger than theoretically expected values. Here we report the direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers, and present two different methods of patterning the films and transferring them to arbitrary substrates. The transferred graphene films show very low sheet resistance of approximately 280 Omega per square, with approximately 80 per cent optical transparency. At low temperatures, the monolayers transferred to silicon dioxide substrates show electron mobility greater than 3,700 cm(2) V(-1) s(-1) and exhibit the half-integer quantum Hall effect, implying that the quality of graphene grown by chemical vapour deposition is as high as mechanically cleaved graphene. Employing the outstanding mechanical properties of graphene, we also demonstrate the macroscopic use of these highly conducting and transparent electrodes in flexible, stretchable, foldable electronics.

10,033 citations

Journal ArticleDOI
29 Aug 1997-Science
TL;DR: In this article, a general approach for multilayers by consecutive adsorption of polyanions and polycations has been proposed and has been extended to other materials such as proteins or colloids.
Abstract: Multilayer films of organic compounds on solid surfaces have been studied for more than 60 years because they allow fabrication of multicomposite molecular assemblies of tailored architecture. However, both the Langmuir-Blodgett technique and chemisorption from solution can be used only with certain classes of molecules. An alternative approach—fabrication of multilayers by consecutive adsorption of polyanions and polycations—is far more general and has been extended to other materials such as proteins or colloids. Because polymers are typically flexible molecules, the resulting superlattice architectures are somewhat fuzzy structures, but the absence of crystallinity in these films is expected to be beneficial for many potential applications.

9,593 citations