scispace - formally typeset
Search or ask a question
Author

George M. Whitesides

Bio: George M. Whitesides is an academic researcher from Harvard University. The author has contributed to research in topics: Microcontact printing & Self-assembled monolayer. The author has an hindex of 240, co-authored 1739 publications receiving 269833 citations. Previous affiliations of George M. Whitesides include University of California, Davis & University of Texas at Austin.


Papers
More filters
Patent
18 Sep 2001
TL;DR: A method and apparatus for treating a fluid may include combining two or more separate streams into a common stream and then splitting the common stream into a new set of separate streams wherein the separate streams may possess different properties.
Abstract: A method and apparatus for treating a fluid. A method for treating a fluid may include combining two or more separate streams into a common stream and then splitting the common stream into a new set of separate streams wherein the separate streams may possess different properties. The separate streams may be combined to produce a gradient, such as a concentration gradient or shear gradient. The apparatus of the invention may provide a network of fluidic channels that may be used to manipulate a fluid to produce, for example, a gradient or a series of solutions containing a substance at varying concentrations.

74 citations

Patent
27 Mar 2009
TL;DR: In this article, a plurality of patterned porous, hydrophilic layers and a fluid-impermeable layer disposed between every two adjacent patterned porosity, hydophilic layers are described.
Abstract: Three-dimensional microfluidic devices including by a plurality of patterned porous, hydrophilic layers and a fluid-impermeable layer disposed between every two adjacent patterned porous, hydrophilic layers are described. Each patterned porous, hydrophilic layer has a fluid-impermeable barrier which substantially permeates the thickness of the porous, hydrophilic layer and defines boundaries of one or more hydrophilic regions within the patterned porous, hydrophilic layer. The fluid-impermeable layer has openings which are aligned with at least part of the hydrophilic region within at least one adjacent patterned porous, hydrophilic layer. Microfluidic assay device, microfluidic mixer, microfluidic flow control device are also described.

73 citations

Journal ArticleDOI
TL;DR: The screening method presented here provides an efficient means of rapidly screening large numbers of ligands made by split-pool synthesis in both yeast and mammalian cells.

73 citations

Journal ArticleDOI
TL;DR: It is shown that proteins display an unexpectedly wide range of behaviors in buffers containing moderate concentrations of SDS (complete unfolding, formation of stable intermediate states, specific association with SDS, and various kinetic phenomena); capillary electrophoresis provides a convenient method of examining these behaviors.
Abstract: This paper shows that proteins display an unexpectedly wide range of behaviors in buffers containing moderate (0.1–10 mM) concentrations of SDS (complete unfolding, formation of stable intermediate states, specific association with SDS, and various kinetic phenomena); capillary electrophoresis provides a convenient method of examining these behaviors. Examination of the dynamics of the response of proteins to SDS offers a way to differentiate and characterize proteins. Based on a survey of 18 different proteins, we demonstrate that proteins differ in the concentrations of SDS at which they denature, in the rates of unfolding in SDS, and in the profiles of the denaturation pathways. We also demonstrate that these differences can be exploited in the analysis of mixtures.

73 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe several soft lithographic techniques that use rubber stamps, molds, and conformable photomasks for micro and nanofabrication, and illustrate how these methods provide low cost routes to patterning for applications in organic electronics and integrated optics.

73 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
05 Feb 2009-Nature
TL;DR: The direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers is reported, and two different methods of patterning the films and transferring them to arbitrary substrates are presented, implying that the quality of graphene grown by chemical vapours is as high as mechanically cleaved graphene.
Abstract: Problems associated with large-scale pattern growth of graphene constitute one of the main obstacles to using this material in device applications. Recently, macroscopic-scale graphene films were prepared by two-dimensional assembly of graphene sheets chemically derived from graphite crystals and graphene oxides. However, the sheet resistance of these films was found to be much larger than theoretically expected values. Here we report the direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers, and present two different methods of patterning the films and transferring them to arbitrary substrates. The transferred graphene films show very low sheet resistance of approximately 280 Omega per square, with approximately 80 per cent optical transparency. At low temperatures, the monolayers transferred to silicon dioxide substrates show electron mobility greater than 3,700 cm(2) V(-1) s(-1) and exhibit the half-integer quantum Hall effect, implying that the quality of graphene grown by chemical vapour deposition is as high as mechanically cleaved graphene. Employing the outstanding mechanical properties of graphene, we also demonstrate the macroscopic use of these highly conducting and transparent electrodes in flexible, stretchable, foldable electronics.

10,033 citations

Journal ArticleDOI
29 Aug 1997-Science
TL;DR: In this article, a general approach for multilayers by consecutive adsorption of polyanions and polycations has been proposed and has been extended to other materials such as proteins or colloids.
Abstract: Multilayer films of organic compounds on solid surfaces have been studied for more than 60 years because they allow fabrication of multicomposite molecular assemblies of tailored architecture. However, both the Langmuir-Blodgett technique and chemisorption from solution can be used only with certain classes of molecules. An alternative approach—fabrication of multilayers by consecutive adsorption of polyanions and polycations—is far more general and has been extended to other materials such as proteins or colloids. Because polymers are typically flexible molecules, the resulting superlattice architectures are somewhat fuzzy structures, but the absence of crystallinity in these films is expected to be beneficial for many potential applications.

9,593 citations