scispace - formally typeset
Search or ask a question
Author

George M. Whitesides

Bio: George M. Whitesides is an academic researcher from Harvard University. The author has contributed to research in topics: Microcontact printing & Self-assembled monolayer. The author has an hindex of 240, co-authored 1739 publications receiving 269833 citations. Previous affiliations of George M. Whitesides include University of California, Davis & University of Texas at Austin.


Papers
More filters
Journal ArticleDOI
TL;DR: The device was used to detect the separation of a mixture of proteins and small molecules by capillary electrophoresis; the separation illustrated the suitability of this integrated fluorescence detection system for bioanalytical applications.
Abstract: This paper describes a prototype of an integrated fluorescence detection system that uses a microavalanche photodiode (μAPD) as the photodetector for microfluidic devices fabricated in poly(dimethylsiloxane) (PDMS). The prototype device consisted of a reusable detection system and a disposable microfluidic system that was fabricated using rapid prototyping. The first step of the procedure was the fabrication of microfluidic channels in PDMS and the encapsulation of a multimode optical fiber (100-μm core diameter) in the PDMS; the tip of the fiber was placed next to the side wall of one of the channels. The optical fiber was used to couple light into the microchannel for the excitation of fluorescent analytes. The photodetector, a prototype solid-state μAPD array, was embedded in a thick slab (1 cm) of PDMS. A thin (80 μm) colored polycarbonate filter was placed on the top of the embedded μAPD to absorb scattered excitation light before it reached the detector. The μAPD was placed below the microchannel an...

440 citations

Journal ArticleDOI
TL;DR: In this article, an approach to the construction of asymmetric hydrogenation catalysts based on embedding an (effectively) achiral diphosphinerhodium(l) moiety at a specific site in a protein was described.
Abstract: We wish to describe an approach to the construction of asymmetric hydrogenation catalysts based on embedding an (effectively) achiral diphosphinerhodium(l) moiety at a specific site in a protein: the protein tertiary structure provides thc chirality required for enantioselective hydrogenation. Although it is presently difficult to predict the enantioselectivity of any hydrogenation from knowledge of the structures of catalyst and substratc, phosphine-rhodium(l) complexes having rigid. conformationally homogeneous structures seem generally to be more effective catalysts than those which are conforma-tionally mobile .2 A globular protein modified by introduction of a catalytically active metal at an appropriate sitc could, in principle, provide an exceptionally wcll-defined steric environment around that mctal. and should do so for considerably smaller effort than would be required to construct a synthetic substancc of compa rable stereochemical complexi ty. Our initial efforts have focused on avidin. This well-characterized protein is composed of four ide ntical subunits, each of which binds biotin and many of its dcrivativcs sufficiently' tightly that association is effectively irreversible (K.r : l0-r2*10-rs M).1'a Biotin was converted to a chelating di-phosphine and complexed with rhodium(l) by the sequencc outlined in cq I (NBD = norbornadiene, Tf = triflate).5.6 The i n term ed ia te N,I/-bi s (2-d i ph en y I phos prh i noet h 1,'l) bi ot i n a m i dc (l) was fully characterizcd:s the rhodium complex l.

440 citations

Journal ArticleDOI
30 Jun 2005-Nature
TL;DR: It is proposed that when cells are confined between two interfaces—one an agar gel and the second PDMS—they swim closer to the agar surface than to the PDMS surface, leading to the preferential movement on the right of the microchannel, and the choice of materials guides the motion of cells in microchannels.
Abstract: The motion of peritrichously flagellated bacteria close to surfaces is relevant to understanding the early stages of biofilm formation and of pathogenic infection. This motion differs from the random-walk trajectories of cells in free solution. Individual Escherichia coli cells swim in clockwise, circular trajectories near planar glass surfaces. On a semi-solid agar substrate, cells differentiate into an elongated, hyperflagellated phenotype and migrate cooperatively over the surface, a phenomenon called swarming. We have developed a technique for observing isolated E. coli swarmer cells moving on an agar substrate and confined in shallow, oxidized poly(dimethylsiloxane) (PDMS) microchannels. Here we show that cells in these microchannels preferentially 'drive on the right', swimming preferentially along the right wall of the microchannel (viewed from behind the moving cell, with the agar on the bottom). We propose that when cells are confined between two interfaces--one an agar gel and the second PDMS--they swim closer to the agar surface than to the PDMS surface (and for much longer periods of time), leading to the preferential movement on the right of the microchannel. Thus, the choice of materials guides the motion of cells in microchannels.

432 citations

Journal ArticleDOI
TL;DR: In this paper, a combination of self-assembled monolayers (SAMs) and microcontact printing (μCP) is proposed to pattern the formation of SAMs, with dimensions on the micron scale.

424 citations

Journal ArticleDOI
12 Apr 2002-Science
TL;DR: The patterned assembly of integrated semiconductor devices onto planar, flexible, and curved substrates on the basis of capillary interactions involving liquid solder is demonstrated.
Abstract: We demonstrate the patterned assembly of integrated semiconductor devices onto planar, flexible, and curved substrates on the basis of capillary interactions involving liquid solder. The substrates presented patterned, solder-coated areas that acted both as receptors for the components of the device during its assembly and as electrical connections during its operation. The components were suspended in water and agitated gently. Minimization of the free energy of the solder-water interface provided the driving force for the assembly. One hundred and thirteen GaAlAs light-emitting diodes with a chip size of 280 micrometers were fabricated into a prototype cylindrical display. It was also possible to assemble 1500 silicon cubes, on an area of 5 square centimeters, in less than 3 minutes, with a defect rate of ∼2%.

420 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
05 Feb 2009-Nature
TL;DR: The direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers is reported, and two different methods of patterning the films and transferring them to arbitrary substrates are presented, implying that the quality of graphene grown by chemical vapours is as high as mechanically cleaved graphene.
Abstract: Problems associated with large-scale pattern growth of graphene constitute one of the main obstacles to using this material in device applications. Recently, macroscopic-scale graphene films were prepared by two-dimensional assembly of graphene sheets chemically derived from graphite crystals and graphene oxides. However, the sheet resistance of these films was found to be much larger than theoretically expected values. Here we report the direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers, and present two different methods of patterning the films and transferring them to arbitrary substrates. The transferred graphene films show very low sheet resistance of approximately 280 Omega per square, with approximately 80 per cent optical transparency. At low temperatures, the monolayers transferred to silicon dioxide substrates show electron mobility greater than 3,700 cm(2) V(-1) s(-1) and exhibit the half-integer quantum Hall effect, implying that the quality of graphene grown by chemical vapour deposition is as high as mechanically cleaved graphene. Employing the outstanding mechanical properties of graphene, we also demonstrate the macroscopic use of these highly conducting and transparent electrodes in flexible, stretchable, foldable electronics.

10,033 citations

Journal ArticleDOI
29 Aug 1997-Science
TL;DR: In this article, a general approach for multilayers by consecutive adsorption of polyanions and polycations has been proposed and has been extended to other materials such as proteins or colloids.
Abstract: Multilayer films of organic compounds on solid surfaces have been studied for more than 60 years because they allow fabrication of multicomposite molecular assemblies of tailored architecture. However, both the Langmuir-Blodgett technique and chemisorption from solution can be used only with certain classes of molecules. An alternative approach—fabrication of multilayers by consecutive adsorption of polyanions and polycations—is far more general and has been extended to other materials such as proteins or colloids. Because polymers are typically flexible molecules, the resulting superlattice architectures are somewhat fuzzy structures, but the absence of crystallinity in these films is expected to be beneficial for many potential applications.

9,593 citations