scispace - formally typeset
Search or ask a question
Author

George M. Whitesides

Bio: George M. Whitesides is an academic researcher from Harvard University. The author has contributed to research in topics: Microcontact printing & Self-assembled monolayer. The author has an hindex of 240, co-authored 1739 publications receiving 269833 citations. Previous affiliations of George M. Whitesides include University of California, Davis & University of Texas at Austin.


Papers
More filters
Journal ArticleDOI
TL;DR: Measuring transmittance through paper represents a new method of quantitative detection that expands the potential functionality of micro-PADs and is potentially attractive for use in resource-limited environments and developing countries.
Abstract: This article describes a point-of-care (POC) system—comprising a microfluidic, paper-based analytical device (μ-PAD) and a hand-held optical colorimeter—for quantifying the concentration of analytes in biological fluids. The μ-PAD runs colorimetric assays, and consists of paper that has been (i) patterned to expose isolated regions of hydrophilic zones and (ii) wet with an index-matching fluid (e.g., vegetable oil) that is applied using a disposable, plastic sleeve encasement. Measuring transmittance through paper represents a new method of quantitative detection that expands the potential functionality of μ-PADs. This prototype transmittance colorimeter is inexpensive, rugged, and fully self-contained, and thus potentially attractive for use in resource-limited environments and developing countries.

393 citations

Journal ArticleDOI
TL;DR: The authors' analysis provides a workable guide for the design of 3D flows with simple patterns of grooved regions, e.g., to control the position of streams in the cross section of a channel or to promote mixing.
Abstract: Through a simple analytical description we quantify how pressure-driven flows over grooved surfaces develop transverse components, which, for shallow grooves, can be modeled with simple anisotropic effective boundary conditions. Helical recirculation results in channels or capillaries with grooved walls. An experimental validation of our model is presented. Our analysis provides a workable guide for the design of 3D flows with simple patterns of grooved regions, e.g., to control the position of streams in the cross section of a channel or to promote mixing. Potential applications in microfluidics are outlined.

389 citations

Journal ArticleDOI
02 Mar 2001-Science
TL;DR: Thin-film electrets have been patterned with trapped charge with submicrometer resolution using a flexible, electrically conductive electrode and this process provides a new method for patterning and suggests possible methods for high-density, charge-based data storage and forhigh-resolution charge- based printing.
Abstract: Thin-film electrets have been patterned with trapped charge with submicrometer resolution using a flexible, electrically conductive electrode. A poly(dimethylsiloxane) stamp, patterned in bas-relief and supporting an 80-nanometer-thick gold film, is brought into contact with an 80-nanometer-thick film of poly(methylmethacrylate) supported on n-doped silicon. A voltage pulse between the gold film and the silicon transfers charge at the contact areas between the gold and the polymer electret. Areas as large as 1 square centimeter were patterned with trapped charges at a resolution better than 150 nanometers in less than 20 seconds. This process provides a new method for patterning; it suggests possible methods for high-density, charge-based data storage and for high-resolution charge-based printing.

389 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
05 Feb 2009-Nature
TL;DR: The direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers is reported, and two different methods of patterning the films and transferring them to arbitrary substrates are presented, implying that the quality of graphene grown by chemical vapours is as high as mechanically cleaved graphene.
Abstract: Problems associated with large-scale pattern growth of graphene constitute one of the main obstacles to using this material in device applications. Recently, macroscopic-scale graphene films were prepared by two-dimensional assembly of graphene sheets chemically derived from graphite crystals and graphene oxides. However, the sheet resistance of these films was found to be much larger than theoretically expected values. Here we report the direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers, and present two different methods of patterning the films and transferring them to arbitrary substrates. The transferred graphene films show very low sheet resistance of approximately 280 Omega per square, with approximately 80 per cent optical transparency. At low temperatures, the monolayers transferred to silicon dioxide substrates show electron mobility greater than 3,700 cm(2) V(-1) s(-1) and exhibit the half-integer quantum Hall effect, implying that the quality of graphene grown by chemical vapour deposition is as high as mechanically cleaved graphene. Employing the outstanding mechanical properties of graphene, we also demonstrate the macroscopic use of these highly conducting and transparent electrodes in flexible, stretchable, foldable electronics.

10,033 citations

Journal ArticleDOI
29 Aug 1997-Science
TL;DR: In this article, a general approach for multilayers by consecutive adsorption of polyanions and polycations has been proposed and has been extended to other materials such as proteins or colloids.
Abstract: Multilayer films of organic compounds on solid surfaces have been studied for more than 60 years because they allow fabrication of multicomposite molecular assemblies of tailored architecture. However, both the Langmuir-Blodgett technique and chemisorption from solution can be used only with certain classes of molecules. An alternative approach—fabrication of multilayers by consecutive adsorption of polyanions and polycations—is far more general and has been extended to other materials such as proteins or colloids. Because polymers are typically flexible molecules, the resulting superlattice architectures are somewhat fuzzy structures, but the absence of crystallinity in these films is expected to be beneficial for many potential applications.

9,593 citations