scispace - formally typeset
Search or ask a question
Author

George M. Whitesides

Bio: George M. Whitesides is an academic researcher from Harvard University. The author has contributed to research in topics: Microcontact printing & Self-assembled monolayer. The author has an hindex of 240, co-authored 1739 publications receiving 269833 citations. Previous affiliations of George M. Whitesides include University of California, Davis & University of Texas at Austin.


Papers
More filters
Proceedings ArticleDOI
06 Nov 2014
TL;DR: An untethered soft-bodied robot that uses a combination of pneumatic and explosive actuators to execute directional jumping maneuvers and a thermodynamic model for the combustion of butane used to power jumping is presented.
Abstract: Locomoting soft robots typically walk or crawl slowly relative to their rigid counterparts. In order to execute agile behaviors such as jumping, rapid actuation modes are required. Here we present an untethered soft-bodied robot that uses a combination of pneumatic and explosive actuators to execute directional jumping maneuvers. This robot can autonomously jump up to 0.6 meters laterally with an apex of up to 0.6 meters (7.5 times it's body height) and can achieve targeted jumping onto an object. The robot is able to execute these directed jumps while carrying the required fuel, pneumatics, control electronics, and battery. We also present a thermodynamic model for the combustion of butane used to power jumping, and calculate the theoretical maximum work output for the design. From experimental results, we find the mechanical efficiency of this prototype to be 0.8%.

140 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the design and fabrication of electrically controlled paper actuators that operate based on the dimensional changes that occur in paper when the moisture absorbed on the surface of the cellulose fi bers changes.
Abstract: This paper describes the design and fabrication of electrically controlled paper actuators that operate based on the dimensional changes that occur in paper when the moisture absorbed on the surface of the cellulose fi bers changes. These actuators are called “Hygroexpansive Electrothermal Paper Actuators” (HEPAs). The actuators are made from paper, conducting polymer, and adhesive tape. They are lightweight, inexpensive, and can be fabricated using simple printing techniques. The central element of the HEPAs is a porous conducting path (used to provide electrothermal heating) that changes the moisture content of the paper and causes actuation. This conducting path is made by embedding a conducting polymer (PEDOT:PSS) within the paper, and thus making a paper/polymer composite that retains the porosity and hydrophilicity of paper. Different types of HEPAs (straight, precurved, and creased) achieved different types of motions (e.g., bending motion, accordion type motion). A theoretical model for their behavior is proposed. These actuators have been used for the manipulation of liquids and for the fabrication of an optical shutter.

140 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analyses of the response of the immune system to E. coli A. whitesides using a probabilistic approach and shows clear patterns in response to the presence of E. whiteside.
Abstract: The phase separation of ultrathin polymer-blend films of polystyrene and polybutadiene on microcontact printed alkanethiol patterns with hydrophobic and hydrophilic end groups $(\ensuremath{-}{\mathrm{CH}}_{3}$ and -COOH) is investigated by atomic force microscopy. Simulations suggest that the phase-separation morphology can be controlled through patterns that modulate the polymer-surface interaction, and this concept is verified experimentally. Length scale pattern control is found to be limited to a scale on the order of a few micrometers.

139 citations

Journal ArticleDOI
TL;DR: This note compares the substrate specificity of D- LDH to that of L-lactate dehydrogenase, illustrates three procedures that use D-LDH in synthesis and two methods for recycling NADH, and provides experimental details illustrating the use of D/NadH in organic synthesis.
Abstract: This note compares the substrate specificity of D-lactate dehydrogenase (D-LDH, EC 1.1.1.28) to that of L-lactate dehydrogenase (L-LDH, EC 1.1.1.27), illustrates three procedures that use D-LDH in synthesis and two methods for recycling NADH, and provides experimental details illustrating the use of D-LDH in organic synthesis.

139 citations

Journal ArticleDOI
TL;DR: In this article, the use of embossing and cut-and-stack methods of assembly was used to generate microfluidic devices from omniphobic paper and demonstrates that fluid flowing through these devices behaves similarly to fluid in an open-channel microfluidity device.
Abstract: This article describes the use of embossing and “cut-and-stack” methods of assembly, to generate microfluidic devices from omniphobic paper and demonstrates that fluid flowing through these devices behaves similarly to fluid in an open-channel microfluidic device. The porosity of the paper to gases allows processes not possible in devices made using PDMS or other nonporous materials. Droplet generators and phase separators, for example, could be made by embossing “T”-shaped channels on paper. Vertical stacking of embossed or cut layers of omniphobic paper generated three-dimensional systems of microchannels. The gas permeability of the paper allowed fluid in the microchannel to contact and exchange with environmental or directed gases. An aqueous stream of water containing a pH indicator, as one demonstration, changed color upon exposure to air containing HCl or NH3 gases.

139 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
05 Feb 2009-Nature
TL;DR: The direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers is reported, and two different methods of patterning the films and transferring them to arbitrary substrates are presented, implying that the quality of graphene grown by chemical vapours is as high as mechanically cleaved graphene.
Abstract: Problems associated with large-scale pattern growth of graphene constitute one of the main obstacles to using this material in device applications. Recently, macroscopic-scale graphene films were prepared by two-dimensional assembly of graphene sheets chemically derived from graphite crystals and graphene oxides. However, the sheet resistance of these films was found to be much larger than theoretically expected values. Here we report the direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers, and present two different methods of patterning the films and transferring them to arbitrary substrates. The transferred graphene films show very low sheet resistance of approximately 280 Omega per square, with approximately 80 per cent optical transparency. At low temperatures, the monolayers transferred to silicon dioxide substrates show electron mobility greater than 3,700 cm(2) V(-1) s(-1) and exhibit the half-integer quantum Hall effect, implying that the quality of graphene grown by chemical vapour deposition is as high as mechanically cleaved graphene. Employing the outstanding mechanical properties of graphene, we also demonstrate the macroscopic use of these highly conducting and transparent electrodes in flexible, stretchable, foldable electronics.

10,033 citations

Journal ArticleDOI
29 Aug 1997-Science
TL;DR: In this article, a general approach for multilayers by consecutive adsorption of polyanions and polycations has been proposed and has been extended to other materials such as proteins or colloids.
Abstract: Multilayer films of organic compounds on solid surfaces have been studied for more than 60 years because they allow fabrication of multicomposite molecular assemblies of tailored architecture. However, both the Langmuir-Blodgett technique and chemisorption from solution can be used only with certain classes of molecules. An alternative approach—fabrication of multilayers by consecutive adsorption of polyanions and polycations—is far more general and has been extended to other materials such as proteins or colloids. Because polymers are typically flexible molecules, the resulting superlattice architectures are somewhat fuzzy structures, but the absence of crystallinity in these films is expected to be beneficial for many potential applications.

9,593 citations