Author
George Nagy
Other affiliations: University of Nebraska–Lincoln, Princeton University, Brigham Young University ...read more
Bio: George Nagy is an academic researcher from Rensselaer Polytechnic Institute. The author has contributed to research in topics: Optical character recognition & Pattern recognition (psychology). The author has an hindex of 39, co-authored 204 publications receiving 6707 citations. Previous affiliations of George Nagy include University of Nebraska–Lincoln & Princeton University.
Papers published on a yearly basis
Papers
More filters
TL;DR: The contributions to document image analysis of 99 papers published in the IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) are clustered, summarized, interpolated, interpreted, and evaluated.
Abstract: The contributions to document image analysis of 99 papers published in the IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) are clustered, summarized, interpolated, interpreted, and evaluated.
544 citations
TL;DR: The document image acquisition process and the knowledge base that must be entered into the system to process a family of page images are described, and the process by which the X-Y tree data structure converts a 2-D page-segmentation problem into a series of 1-D string-parsing problems that can be tackled using conventional compiler tools.
Abstract: Gobbledoc, a system providing remote access to stored documents, which is based on syntactic document analysis and optical character recognition (OCR), is discussed. In Gobbledoc, image processing, document analysis, and OCR operations take place in batch mode when the documents are acquired. The document image acquisition process and the knowledge base that must be entered into the system to process a family of page images are described. The process by which the X-Y tree data structure converts a 2-D page-segmentation problem into a series of 1-D string-parsing problems that can be tackled using conventional compiler tools is also described. Syntactic analysis is used in Gobbledoc to divide each page into labeled rectangular blocks. Blocks labeled text are converted by OCR to obtain a secondary (ASCII) document representation. Since such symbolic files are better suited for computerized search than for human access to the document content and because too many visual layout clues are lost in the OCR process (including some special characters), Gobbledoc preserves the original block images for human browsing. Storage, networking, and display issues specific to document images are also discussed. >
466 citations
TL;DR: A complete face recognition system is implemented by integrating the best option of each step and achieves superior performance on every category of the FERET test: near perfect classification accuracy, and significantly better than any other reported performance on pictures taken several days to more than a year apart.
Abstract: In contrast to holistic methods, local matching methods extract facial features from different levels of locality and quantify them precisely. To determine how they can be best used for face recognition, we conducted a comprehensive comparative study at each step of the local matching process. The conclusions from our experiments include: (1) additional evidence that Gabor features are effective local feature representations and are robust to illumination changes; (2) discrimination based only on a small portion of the face area is surprisingly good; (3) the configuration of facial components does contain rich discriminating information and comparing corresponding local regions utilizes shape features more effectively than comparing corresponding facial components; (4) spatial multiresolution analysis leads to better classification performance; (5) combining local regions with Borda count classifier combination method alleviates the curse of dimensionality. We implemented a complete face recognition system by integrating the best option of each step. Without training, illumination compensation and without any parameter tuning, it achieves superior performance on every category of the FERET test: near perfect classification accuracy (99.5%) on pictures taken on the same day regardless of indoor illumination variations, and significantly better than any other reported performance on pictures taken several days to more than a year apart. The most significant experiments were repeated on the AR database, with similar results.
340 citations
IBM1
TL;DR: This paper reviews statistical, adaptive, and heuristic techniques used in laboratory investigations of pattern recognition problems and includes correlation methods, discriminant analysis, maximum likelihood decisions minimax techniques, perceptron-like algorithms, feature extraction, preprocessing, clustering and nonsupervised learning.
Abstract: This paper reviews statistical, adaptive, and heuristic techniques used in laboratory investigations of pattern recognition problems. The discussion includes correlation methods, discriminant analysis, maximum likelihood decisions minimax techniques, perceptron-like algorithms, feature extraction, preprocessing, clustering and nonsupervised learning. Two-dimensional distributions are used to illustrate the properties of the various procedures. Several experimental projects, representative of prospective applications, are also described.
317 citations
Cited by
More filters
TL;DR: An overview of pattern clustering methods from a statistical pattern recognition perspective is presented, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners.
Abstract: Clustering is the unsupervised classification of patterns (observations, data items, or feature vectors) into groups (clusters). The clustering problem has been addressed in many contexts and by researchers in many disciplines; this reflects its broad appeal and usefulness as one of the steps in exploratory data analysis. However, clustering is a difficult problem combinatorially, and differences in assumptions and contexts in different communities has made the transfer of useful generic concepts and methodologies slow to occur. This paper presents an overview of pattern clustering methods from a statistical pattern recognition perspective, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners. We present a taxonomy of clustering techniques, and identify cross-cutting themes and recent advances. We also describe some important applications of clustering algorithms such as image segmentation, object recognition, and information retrieval.
14,054 citations
TL;DR: The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.
Abstract: The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques and methods imported from statistical learning theory have been receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging applications, such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, require robust and efficient pattern recognition techniques. The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.
6,527 citations
01 Jan 2011
TL;DR: A new benchmark dataset for research use is introduced containing over 600,000 labeled digits cropped from Street View images, and variants of two recently proposed unsupervised feature learning methods are employed, finding that they are convincingly superior on benchmarks.
Abstract: Detecting and reading text from natural images is a hard computer vision task that is central to a variety of emerging applications. Related problems like document character recognition have been widely studied by computer vision and machine learning researchers and are virtually solved for practical applications like reading handwritten digits. Reliably recognizing characters in more complex scenes like photographs, however, is far more difficult: the best existing methods lag well behind human performance on the same tasks. In this paper we attack the problem of recognizing digits in a real application using unsupervised feature learning methods: reading house numbers from street level photos. To this end, we introduce a new benchmark dataset for research use containing over 600,000 labeled digits cropped from Street View images. We then demonstrate the difficulty of recognizing these digits when the problem is approached with hand-designed features. Finally, we employ variants of two recently proposed unsupervised feature learning methods and find that they are convincingly superior on our benchmarks.
5,311 citations
01 Jan 1973
TL;DR: In this paper, two fuzzy versions of the k-means optimal, least squared error partitioning problem are formulated for finite subsets X of a general inner product space, and the extremizing solutions are shown to be fixed points of a certain operator T on the class of fuzzy, k-partitions of X, and simple iteration of T provides an algorithm which has the descent property relative to the LSE criterion function.
Abstract: Two fuzzy versions of the k-means optimal, least squared error partitioning problem are formulated for finite subsets X of a general inner product space. In both cases, the extremizing solutions are shown to be fixed points of a certain operator T on the class of fuzzy, k-partitions of X, and simple iteration of T provides an algorithm which has the descent property relative to the least squared error criterion function. In the first case, the range of T consists largely of ordinary (i.e. non-fuzzy) partitions of X and the associated iteration scheme is essentially the well known ISODATA process of Ball and Hall. However, in the second case, the range of T consists mainly of fuzzy partitions and the associated algorithm is new; when X consists of k compact well separated (CWS) clusters, Xi , this algorithm generates a limiting partition with membership functions which closely approximate the characteristic functions of the clusters Xi . However, when X is not the union of k CWS clusters, the limi...
5,254 citations
TL;DR: The Voronoi diagram as discussed by the authors divides the plane according to the nearest-neighbor points in the plane, and then divides the vertices of the plane into vertices, where vertices correspond to vertices in a plane.
Abstract: Computational geometry is concerned with the design and analysis of algorithms for geometrical problems. In addition, other more practically oriented, areas of computer science— such as computer graphics, computer-aided design, robotics, pattern recognition, and operations research—give rise to problems that inherently are geometrical. This is one reason computational geometry has attracted enormous research interest in the past decade and is a well-established area today. (For standard sources, we refer to the survey article by Lee and Preparata [19841 and to the textbooks by Preparata and Shames [1985] and Edelsbrunner [1987bl.) Readers familiar with the literature of computational geometry will have noticed, especially in the last few years, an increasing interest in a geometrical construct called the Voronoi diagram. This trend can also be observed in combinatorial geometry and in a considerable number of articles in natural science journals that address the Voronoi diagram under different names specific to the respective area. Given some number of points in the plane, their Voronoi diagram divides the plane according to the nearest-neighbor
4,236 citations