scispace - formally typeset
Search or ask a question
Author

George S. Baillie

Bio: George S. Baillie is an academic researcher from University of Glasgow. The author has contributed to research in topics: Protein kinase A & Phosphodiesterase. The author has an hindex of 59, co-authored 213 publications receiving 12463 citations. Previous affiliations of George S. Baillie include University of Strathclyde & Life Sciences Institute.


Papers
More filters
Journal ArticleDOI
18 Nov 2005-Science
TL;DR: The disrupted in schizophrenia 1 (DISC1) gene is disrupted by a balanced translocation in a subject diagnosed with schizophrenia and a relative with chronic psychiatric illness and a mechanistic model whereby DISC1 sequesters PDE4B in resting cells and releases it in an activated state in response to elevated cAMP is proposed.
Abstract: The disrupted in schizophrenia 1 (DISC1) gene is a candidate susceptibility factor for schizophrenia, but its mechanistic role in the disorder is unknown. Here we report that the gene encoding phosphodiesterase 4B (PDE4B) is disrupted by a balanced translocation in a subject diagnosed with schizophrenia and a relative with chronic psychiatric illness. The PDEs inactivate adenosine 3',5'-monophosphate (cAMP), a second messenger implicated in learning, memory, and mood. We show that DISC1 interacts with the UCR2 domain of PDE4B and that elevation of cellular cAMP leads to dissociation of PDE4B from DISC1 and an increase in PDE4B activity. We propose a mechanistic model whereby DISC1 sequesters PDE4B in resting cells and releases it in an activated state in response to elevated cAMP.

656 citations

Journal ArticleDOI
25 Oct 2002-Science
TL;DR: It is shown that β-arrestins coordinate both processes by recruiting PDEs to activated β2-adrenergic receptors in the plasma membrane of mammalian cells by simultaneously slowing the rate of cAMP production through receptor desensitization and increasing the rates of its degradation at the membrane.
Abstract: Catecholamines signal through the β 2 -adrenergic receptor by promoting production of the second messenger adenosine 3′,5′-monophosphate (cAMP). The magnitude of this signal is restricted by desensitization of the receptors through their binding to β-arrestins and by cAMP degradation by phosphodiesterase (PDE) enzymes. We show that β-arrestins coordinate both processes by recruiting PDEs to activated β 2 -adrenergic receptors in the plasma membrane of mammalian cells. In doing so, the β-arrestins limit activation of membrane-associated cAMP-activated protein kinase by simultaneously slowing the rate of cAMP production through receptor desensitization and increasing the rate of its degradation at the membrane.

489 citations

Journal ArticleDOI
TL;DR: Biofilms formed on two different types of polyvinyl chloride catheter, obtained from different manufacturers, showed differences in susceptibility to amphotericin B, suggesting that drug resistance may arise as a result of highly specific, surface-induced gene expression.
Abstract: Extracellular polymeric material (EP), comprising the matrix of Candida albicans biofilms, was isolated and its composition was compared with that of EP obtained from culture supernatants of planktonically grown (suspended) organisms. Both preparations consisted of carbohydrate, protein, phosphorus and hexosamine, but biofilm EP contained significantly less total carbohydrate (41%) and protein (5%) than planktonic EP. It also had a higher proportion of glucose (16%) and contained galactose, suggesting that it might possess components unique to biofilms. To investigate whether the EP matrix plays a role in the resistance of biofilms to antifungal agents, susceptibility profiles of biofilms incubated statically (which have relatively little matrix) were compared with those for biofilms incubated with gentle shaking (which produce much more matrix material). Biofilms grown with or without shaking did not exhibit significant differences in susceptibility to any of the drugs tested, indicating that drug resistance is unrelated to the extent of matrix formation. However, biofilms formed on two different types of polyvinyl chloride catheter, obtained from different manufacturers, showed differences in susceptibility to amphotericin B, suggesting that drug resistance may arise as a result of highly specific, surface-induced gene expression.

381 citations

Journal ArticleDOI
22 Oct 2009-Nature
TL;DR: It is demonstrated that brief sleep deprivation disrupts hippocampal function by interfering with cAMP signalling through increased PDE4 activity, and drugs that enhance camp signalling may provide a new therapeutic approach to counteract the cognitive effects of sleep deprivation.
Abstract: Millions of people regularly obtain insufficient sleep. Given the effect of sleep deprivation on our lives, understanding the cellular and molecular pathways affected by sleep deprivation is clearly of social and clinical importance. One of the major effects of sleep deprivation on the brain is to produce memory deficits in learning models that are dependent on the hippocampus. Here we have identified a molecular mechanism by which brief sleep deprivation alters hippocampal function. Sleep deprivation selectively impaired 3', 5'-cyclic AMP (cAMP)- and protein kinase A (PKA)-dependent forms of synaptic plasticity in the mouse hippocampus, reduced cAMP signalling, and increased activity and protein levels of phosphodiesterase 4 (PDE4), an enzyme that degrades cAMP. Treatment of mice with phosphodiesterase inhibitors rescued the sleep-deprivation-induced deficits in cAMP signalling, synaptic plasticity and hippocampus-dependent memory. These findings demonstrate that brief sleep deprivation disrupts hippocampal function by interfering with cAMP signalling through increased PDE4 activity. Thus, drugs that enhance cAMP signalling may provide a new therapeutic approach to counteract the cognitive effects of sleep deprivation.

362 citations

Journal ArticleDOI
TL;DR: Receptor-stimulated β-arrestin-mediated recruitment of PDE4 plays a central role in the regulation of G protein switching by the β2AR in a physiological system, the cardiac myocyte.
Abstract: Phosphorylation of the β2 adrenoreceptor (β2AR) by cAMP-activated protein kinase A (PKA) switches its predominant coupling from stimulatory guanine nucleotide regulatory protein (Gs) to inhibitory guanine nucleotide regulatory protein (Gi). β-Arrestins recruit the cAMP-degrading PDE4 phosphodiesterases to the β2AR, thus controlling PKA activity at the membrane. Here we investigate a role for PDE4 recruitment in regulating G protein switching by the β2AR. In human embryonic kidney 293 cells overexpressing a recombinant β2AR, stimulation with isoprenaline recruits β-arrestins 1 and 2 as well as both PDE4D3 and PDE4D5 to the receptor and stimulates receptor phosphorylation by PKA. The PKA phosphorylation status of the β2AR is enhanced markedly when cells are treated with the selective PDE4-inhibitor rolipram or when they are transfected with a catalytically inactive PDE4D mutant (PDE4D5-D556A) that competitively inhibits isoprenaline-stimulated recruitment of native PDE4 to the β2AR. Rolipram and PDE4D5-D556A also enhance β2AR-mediated activation of extracellular signal-regulated kinases ERK1/2. This is consistent with a switch in coupling of the receptor from Gs to Gi, because the ERK1/2 activation is sensitive to both inhibitors of PKA (H89) and Gi (pertussis toxin). In cardiac myocytes, the β2AR also switches from Gs to Gi coupling. Treating primary cardiac myocytes with isoprenaline induces recruitment of PDE4D3 and PDE4D5 to membranes and activates ERK1/2. Rolipram robustly enhances this activation in a manner sensitive to both pertussis toxin and H89. Adenovirus-mediated expression of PDE4D5-D556A also potentiates ERK1/2 activation. Thus, receptor-stimulated β-arrestin-mediated recruitment of PDE4 plays a central role in the regulation of G protein switching by the β2AR in a physiological system, the cardiac myocyte.

360 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The functions, properties and constituents of the EPS matrix that make biofilms the most successful forms of life on earth are described.
Abstract: The microorganisms in biofilms live in a self-produced matrix of hydrated extracellular polymeric substances (EPS) that form their immediate environment. EPS are mainly polysaccharides, proteins, nucleic acids and lipids; they provide the mechanical stability of biofilms, mediate their adhesion to surfaces and form a cohesive, three-dimensional polymer network that interconnects and transiently immobilizes biofilm cells. In addition, the biofilm matrix acts as an external digestive system by keeping extracellular enzymes close to the cells, enabling them to metabolize dissolved, colloidal and solid biopolymers. Here we describe the functions, properties and constituents of the EPS matrix that make biofilms the most successful forms of life on earth.

7,041 citations

Journal ArticleDOI
TL;DR: It is understood that biofilms are universal, occurring in aquatic and industrial water systems as well as a large number of environments and medical devices relevant for public health, and that treatments may be based on inhibition of genes involved in cell attachment and biofilm formation.
Abstract: Though biofilms were first described by Antonie van Leeuwenhoek, the theory describing the biofilm process was not developed until 1978. We now understand that biofilms are universal, occurring in aquatic and industrial water systems as well as a large number of environments and medical devices relevant for public health. Using tools such as the scanning electron microscope and, more recently, the confocal laser scanning microscope, biofilm researchers now understand that biofilms are not unstructured, homogeneous deposits of cells and accumulated slime, but complex communities of surface-associated cells enclosed in a polymer matrix containing open water channels. Further studies have shown that the biofilm phenotype can be described in terms of the genes expressed by biofilm-associated cells. Microorganisms growing in a biofilm are highly resistant to antimicrobial agents by one or more mechanisms. Biofilm-associated microorganisms have been shown to be associated with several human diseases, such as native valve endocarditis and cystic fibrosis, and to colonize a wide variety of medical devices. Though epidemiologic evidence points to biofilms as a source of several infectious diseases, the exact mechanisms by which biofilm-associated microorganisms elicit disease are poorly understood. Detachment of cells or cell aggregates, production of endotoxin, increased resistance to the host immune system, and provision of a niche for the generation of resistant organisms are all biofilm processes which could initiate the disease process. Effective strategies to prevent or control biofilms on medical devices must take into consideration the unique and tenacious nature of biofilms. Current intervention strategies are designed to prevent initial device colonization, minimize microbial cell attachment to the device, penetrate the biofilm matrix and kill the associated cells, or remove the device from the patient. In the future, treatments may be based on inhibition of genes involved in cell attachment and biofilm formation.

5,748 citations

Journal ArticleDOI
23 Nov 2006-Nature
TL;DR: A first-generation CNV map of the human genome is constructed through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia, underscoring the importance of CNV in genetic diversity and evolution and the utility of this resource for genetic disease studies.
Abstract: Copy number variation (CNV) of DNA sequences is functionally significant but has yet to be fully ascertained. We have constructed a first-generation CNV map of the human genome through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia (the HapMap collection). DNA from these individuals was screened for CNV using two complementary technologies: single-nucleotide polymorphism (SNP) genotyping arrays, and clone-based comparative genomic hybridization. A total of 1,447 copy number variable regions (CNVRs), which can encompass overlapping or adjacent gains or losses, covering 360 megabases (12% of the genome) were identified in these populations. These CNVRs contained hundreds of genes, disease loci, functional elements and segmental duplications. Notably, the CNVRs encompassed more nucleotide content per genome than SNPs, underscoring the importance of CNV in genetic diversity and evolution. The data obtained delineate linkage disequilibrium patterns for many CNVs, and reveal marked variation in copy number among populations. We also demonstrate the utility of this resource for genetic disease studies.

4,275 citations

Journal ArticleDOI
TL;DR: The results reviewed in this article indicate that the formation of biofilms serves as a new model system for the study of microbial development.
Abstract: ▪ Abstract Biofilms can be defined as communities of microorganisms attached to a surface. It is clear that microorganisms undergo profound changes during their transition from planktonic (free-swimming) organisms to cells that are part of a complex, surface-attached community. These changes are reflected in the new phenotypic characteristics developed by biofilm bacteria and occur in response to a variety of environmental signals. Recent genetic and molecular approaches used to study bacterial and fungal biofilms have identified genes and regulatory circuits important for initial cell-surface interactions, biofilm maturation, and the return of biofilm microorganisms to a planktonic mode of growth. Studies to date suggest that the planktonic-biofilm transition is a complex and highly regulated process. The results reviewed in this article indicate that the formation of biofilms serves as a new model system for the study of microbial development.

3,321 citations