scispace - formally typeset
Search or ask a question
Author

George Stamatoyannopoulos

Bio: George Stamatoyannopoulos is an academic researcher from University of Washington. The author has contributed to research in topics: Globin & Fetal hemoglobin. The author has an hindex of 45, co-authored 185 publications receiving 14834 citations. Previous affiliations of George Stamatoyannopoulos include Central University of Venezuela & Mount Sinai St. Luke's and Mount Sinai Roosevelt.


Papers
More filters
01 Sep 2012
TL;DR: The Encyclopedia of DNA Elements project provides new insights into the organization and regulation of the authors' genes and genome, and is an expansive resource of functional annotations for biomedical research.

2,767 citations

Journal ArticleDOI
06 Sep 2012-Nature
TL;DR: The first extensive map of human DHSs identified through genome-wide profiling in 125 diverse cell and tissue types is presented, revealing novel relationships between chromatin accessibility, transcription, DNA methylation and regulatory factor occupancy patterns.
Abstract: DNase I hypersensitive sites (DHSs) are markers of regulatory DNA and have underpinned the discovery of all classes of cis-regulatory elements including enhancers, promoters, insulators, silencers and locus control regions. Here we present the first extensive map of human DHSs identified through genome-wide profiling in 125 diverse cell and tissue types. We identify ∼2.9 million DHSs that encompass virtually all known experimentally validated cis-regulatory sequences and expose a vast trove of novel elements, most with highly cell-selective regulation. Annotating these elements using ENCODE data reveals novel relationships between chromatin accessibility, transcription, DNA methylation and regulatory factor occupancy patterns. We connect ∼580,000 distal DHSs with their target promoters, revealing systematic pairing of different classes of distal DHSs and specific promoter types. Patterning of chromatin accessibility at many regulatory regions is organized with dozens to hundreds of co-activated elements, and the transcellular DNase I sensitivity pattern at a given region can predict cell-type-specific functional behaviours. The DHS landscape shows signatures of recent functional evolutionary constraint. However, the DHS compartment in pluripotent and immortalized cells exhibits higher mutation rates than that in highly differentiated cells, exposing an unexpected link between chromatin accessibility, proliferative potential and patterns of human variation. An extensive map of human DNase I hypersensitive sites, markers of regulatory DNA, in 125 diverse cell and tissue types is described; integration of this information with other ENCODE-generated data sets identifies new relationships between chromatin accessibility, transcription, DNA methylation and regulatory factor occupancy patterns. This paper describes the first extensive map of human DNaseI hypersensitive sites — markers of regulatory DNA — in 125 diverse cell and tissue types. Integration of this information with other data sets generated by ENCODE (Encyclopedia of DNA Elements) identified new relationships between chromatin accessibility, transcription, DNA methylation and regulatory-factor occupancy patterns. Evolutionary-conservation analysis revealed signatures of recent functional constraint within DNaseI hypersensitive sites.

2,628 citations

Journal ArticleDOI
Elise A. Feingold1, Peter J. Good1, Mark S. Guyer1, S. Kamholz1  +193 moreInstitutions (19)
22 Oct 2004-Science
TL;DR: The ENCyclopedia Of DNA Elements (ENCODE) Project is organized as an international consortium of computational and laboratory-based scientists working to develop and apply high-throughput approaches for detecting all sequence elements that confer biological function.
Abstract: The ENCyclopedia Of DNA Elements (ENCODE) Project aims to identify all functional elements in the human genome sequence. The pilot phase of the Project is focused on a specified 30 megabases (∼1%) of the human genome sequence and is organized as an international consortium of computational and laboratory-based scientists working to develop and apply high-throughput approaches for detecting all sequence elements that confer biological function. The results of this pilot phase will guide future efforts to analyze the entire human genome.

2,248 citations

Journal ArticleDOI
Swapan Mallick1, Swapan Mallick2, Swapan Mallick3, Heng Li2, Mark Lipson1, Iain Mathieson1, Melissa Gymrek, Fernando Racimo4, Mengyao Zhao3, Mengyao Zhao1, Mengyao Zhao2, Niru Chennagiri2, Niru Chennagiri3, Niru Chennagiri1, Susanne Nordenfelt1, Susanne Nordenfelt2, Susanne Nordenfelt3, Arti Tandon2, Arti Tandon1, Pontus Skoglund2, Pontus Skoglund1, Iosif Lazaridis2, Iosif Lazaridis1, Sriram Sankararaman5, Sriram Sankararaman1, Sriram Sankararaman2, Qiaomei Fu6, Qiaomei Fu1, Qiaomei Fu2, Nadin Rohland2, Nadin Rohland1, Gabriel Renaud7, Yaniv Erlich8, Thomas Willems9, Carla Gallo10, Jeffrey P. Spence4, Yun S. Song11, Yun S. Song4, Giovanni Poletti10, Francois Balloux12, George van Driem13, Peter de Knijff14, Irene Gallego Romero15, Aashish R. Jha16, Doron M. Behar17, Claudio M. Bravi18, Cristian Capelli19, Tor Hervig20, Andrés Moreno-Estrada, Olga L. Posukh21, Elena Balanovska, Oleg Balanovsky22, Sena Karachanak-Yankova23, Hovhannes Sahakyan24, Hovhannes Sahakyan17, Draga Toncheva23, Levon Yepiskoposyan24, Chris Tyler-Smith25, Yali Xue25, M. Syafiq Abdullah26, Andres Ruiz-Linares12, Cynthia M. Beall27, Anna Di Rienzo16, Choongwon Jeong16, Elena B. Starikovskaya, Ene Metspalu28, Ene Metspalu17, Jüri Parik17, Richard Villems28, Richard Villems29, Richard Villems17, Brenna M. Henn30, Ugur Hodoglugil31, Robert W. Mahley32, Antti Sajantila33, George Stamatoyannopoulos34, Joseph Wee, Rita Khusainova35, Elza Khusnutdinova35, Sergey Litvinov35, Sergey Litvinov17, George Ayodo36, David Comas37, Michael F. Hammer38, Toomas Kivisild39, Toomas Kivisild17, William Klitz, Cheryl A. Winkler40, Damian Labuda41, Michael J. Bamshad34, Lynn B. Jorde42, Sarah A. Tishkoff11, W. Scott Watkins42, Mait Metspalu17, Stanislav Dryomov, Rem I. Sukernik43, Lalji Singh44, Lalji Singh5, Kumarasamy Thangaraj44, Svante Pääbo7, Janet Kelso7, Nick Patterson2, David Reich1, David Reich2, David Reich3 
13 Oct 2016-Nature
TL;DR: It is demonstrated that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.
Abstract: Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.

1,133 citations

Journal ArticleDOI
01 Nov 2002-Blood
TL;DR: The discovery of the LCR in the beta-globin locus and the characterization of LCRs in other loci reinforces the concept that developmental and cell lineage-specific regulation of gene expression relies not on gene-proximal elements such as promoters, enhancers, and silencers exclusively, but also on long-range interactions of various cis regulatory elements and dynamic chromatin alterations.

464 citations


Cited by
More filters
Journal ArticleDOI
06 Sep 2012-Nature
TL;DR: The Encyclopedia of DNA Elements project provides new insights into the organization and regulation of the authors' genes and genome, and is an expansive resource of functional annotations for biomedical research.
Abstract: The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

13,548 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an approach for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

10,798 citations

Book ChapterDOI
01 Jan 1969

10,262 citations

Journal ArticleDOI
23 Jan 2015-Science
TL;DR: In this paper, a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level.
Abstract: Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body.

9,745 citations

Journal ArticleDOI
15 Feb 2013-Science
TL;DR: The type II bacterial CRISPR system is engineer to function with custom guide RNA (gRNA) in human cells to establish an RNA-guided editing tool for facile, robust, and multiplexable human genome engineering.
Abstract: Bacteria and archaea have evolved adaptive immune defenses, termed clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems, that use short RNA to direct degradation of foreign nucleic acids. Here, we engineer the type II bacterial CRISPR system to function with custom guide RNA (gRNA) in human cells. For the endogenous AAVS1 locus, we obtained targeting rates of 10 to 25% in 293T cells, 13 to 8% in K562 cells, and 2 to 4% in induced pluripotent stem cells. We show that this process relies on CRISPR components; is sequence-specific; and, upon simultaneous introduction of multiple gRNAs, can effect multiplex editing of target loci. We also compute a genome-wide resource of ~190 K unique gRNAs targeting ~40.5% of human exons. Our results establish an RNA-guided editing tool for facile, robust, and multiplexable human genome engineering.

8,197 citations