scispace - formally typeset
Search or ask a question
Author

George Stephanopoulos

Bio: George Stephanopoulos is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Process control & Process (engineering). The author has an hindex of 47, co-authored 191 publications receiving 8161 citations. Previous affiliations of George Stephanopoulos include Carnegie Mellon University & McMaster University.


Papers
More filters
Book
01 Jan 1984
TL;DR: This paper presents a meta-analysis of the Dynamic and Static Behavior of Chemical Processes and the design of Control Systems for Multivariable Processes using digital computers.
Abstract: 1 The Control of a Chemical Process: Its Characteristics and Associated Problems 2 Modeling the Dynamic and Static Behavior of Chemical Processes 3 Analysis of the Dynamic Behavior of Chemical Processes 4 Analysis and Design of Feedback Control Systems 5 Analysis and Design of Advanced Control Systems 6 Design of Control Systems for Multivariable Processes 7 Process Control Using Digital Computers

796 citations

Journal ArticleDOI
TL;DR: A compendium of gene expression in normal human tissues suitable as a reference for defining basic organ systems biology is created and subsets of tissue-selective genes are identified that define key biological processes characterizing each organ.
Abstract: This study creates a compendium of gene expression in normal human tissues suitable as a reference for defining basic organ systems biology. Using oligonucleotide microarrays, we analyze 59 samples representing 19 distinct tissue types. Of approximately 7,000 genes analyzed, 451 genes are expressed in all tissue types and designated as housekeeping genes. These genes display significant variation in expression levels among tissues and are sufficient for discerning tissue-specific expression signatures, indicative of fundamental differences in biochemical processes. In addition, subsets of tissue-selective genes are identified that define key biological processes characterizing each organ. This compendium highlights similarities and differences among organ systems and different individuals and also provides a publicly available resource (Human Gene Expression Index, the HuGE Index, http://www.hugeindex.org) for future studies of pathophysiology.

479 citations

Journal ArticleDOI
TL;DR: A review of the rapidly growing process synthesis literature of over 190 articles can be found in this paper, almost all of which have been produced in the last decade, including chemical reaction paths, separation systems, heat exchanger networks, complete flowsheets, and control systems.
Abstract: Process synthesis is the step in design where the chemical engineer selects the component parts and how to interconnect them to create his flowsheet. This paper reviews the rapidly growing process synthesis literature of over 190 articles, almost all of which have been produced in the last decade. The paper first introduces the nature of the synthesis problem and outlines the variety of approaches which have appeared to solve aspects of it. The problems include developing a representation, a means to evaluate alternatives, and a strategy to search the almost infinitely large space of possible alternatives. As the article demonstrates, effective solutions are very dependent on the nature of the synthesis problem being addressed. The article covers in detail the following five synthesis topics: chemical reaction paths, separation systems, heat exchanger networks, complete flowsheets, and control systems. Readily apparent are the development of industrially significant insights to aid in the design of heat exchanger networks. Reasonable progress exists in the synthesis of separation systems based on nearly ideal distillation technology and in the development of computer aids by chemists for reaction path synthesis leading to desired complex organic molecules. More work is needed for the remaining areas to become industrially significant.

372 citations

Journal ArticleDOI
TL;DR: Part I of this series presents a unified formulation of the problem of synthesizing control structures for chemical processes that is rigorous and free of engineering heuristics, providing the framework for generalizations and further analytical developments on this important problem.
Abstract: Part I of this series presents a unified formulation of the problem of synthesizing control structures for chemical processes. The formulation is rigorous and free of engineering heuristics, providing the framework for generalizations and further analytical developments on this important problem. Decomposition is the underlying, guiding principle, leading to the classification of the control objectives (regulation, optimization) and the partitioning of the process for the practical implementation of the control structures. Within the framework of hierarchical control and multi-level optimization theory, mathematical measures have been developed to guide the decomposition of the control tasks and the partitioning of the process. Consequently, the extent and the purpose of the regulatory and optimizing control objectives for a given plant are well defined, and alternative control structures can be generated for the designer's analysis and screening. In addition, in this first part we examine the features of various optimizing control strategies (feedforward, feedback; centralized, decentralized) and develop methods for their generation and selective screening. Application of all these principles is illustrated on an integrated chemical plant that offers enough variety and complexity to allow conclusions about a real-life situation.

280 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the histone deacetylase (HDAC) inhibitor drug trichostatin A (TSA) reduces spinal cord inflammation, demyelination, neuronal and axonal loss and ameliorates disability in the relapsing phase of experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS).

261 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The flexible constraint handling capabilities of MPC are shown to be a significant advantage in the context of the overall operating objectives of the process industries and the 1-, 2-, and ∞-norm formulations of the performance objective are discussed.

5,188 citations

Journal ArticleDOI
TL;DR: This work introduces a new method called sparse principal component analysis (SPCA) using the lasso (elastic net) to produce modified principal components with sparse loadings and shows that PCA can be formulated as a regression-type optimization problem.
Abstract: Principal component analysis (PCA) is widely used in data processing and dimensionality reduction. However, PCA suffers from the fact that each principal component is a linear combination of all the original variables, thus it is often difficult to interpret the results. We introduce a new method called sparse principal component analysis (SPCA) using the lasso (elastic net) to produce modified principal components with sparse loadings. We first show that PCA can be formulated as a regression-type optimization problem; sparse loadings are then obtained by imposing the lasso (elastic net) constraint on the regression coefficients. Efficient algorithms are proposed to fit our SPCA models for both regular multivariate data and gene expression arrays. We also give a new formula to compute the total variance of modified principal components. As illustrations, SPCA is applied to real and simulated data with encouraging results.

3,102 citations

01 Jan 2007
TL;DR: The Third edition of the Kirk-Othmer encyclopedia of chemical technology as mentioned in this paper was published in 1989, with the title "Kirk's Encyclopedia of Chemical Technology: Chemical Technology".
Abstract: 介绍了Kirk—Othmer Encyclopedia of Chemical Technology(化工技术百科全书)(第五版)电子图书网络版数据库,并对该数据库使用方法和检索途径作出了说明,且结合实例简单地介绍了该数据库的检索方法。

2,666 citations

01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations

Journal ArticleDOI
14 Dec 2007-Cell
TL;DR: It is shown that C1q, the initiating protein in the classical complement cascade, is expressed by postnatal neurons in response to immature astrocytes and is localized to synapses throughout the postnatal CNS and retina, supporting a model in which unwanted synapses are tagged by complement for elimination and suggesting that complement-mediated synapse elimination may become aberrantly reactivated in neurodegenerative disease.

2,501 citations