scispace - formally typeset
Search or ask a question
Author

George T. Gray

Bio: George T. Gray is an academic researcher from Los Alamos National Laboratory. The author has contributed to research in topics: Strain rate & Shock (mechanics). The author has an hindex of 54, co-authored 474 publications receiving 10421 citations. Previous affiliations of George T. Gray include Massachusetts Institute of Technology & Carnegie Mellon University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the role of stacking fault energy (SFE) in deformation twinning and work hardening was systematically studied in Cu and a series of Cu-Al solid-solution alloys.
Abstract: The role of stacking fault energy (SFE) in deformation twinning and work hardening was systematically studied in Cu (SFE ∼78 ergs/cm2) and a series of Cu-Al solid-solution alloys (0.2, 2, 4, and 6 wt pct Al with SFE ∼75, 25, 13, and 6 ergs/cm2, respectively). The materials were deformed under quasi-static compression and at strain rates of ∼1000/s in a Split-Hopkinson pressure bar (SHPB). The quasi-static flow curves of annealed 0.2 and 2 wt pct Al alloys were found to be representative of solid-solution strengthening and well described by the Hall-Petch relation. The quasi-static flow curves of annealed 4 and 6 wt pct Al alloys showed additional strengthening at strains greater than 0.10. This additional strengthening was attributed to deformation twins and the presence of twins was confirmed by optical microscopy. The strengthening contribution of deformation twins was incorporated in a modified Hall-Petch equation (using intertwin spacing as the “effective” grain size), and the calculated strength was in agreement with the observed quasi-static flow stresses. While the work-hardening rate of the low SFE Cu-Al alloys was found to be independent of the strain rate, the work-hardening rate of Cu and the high SFE Cu-Al alloys (low Al content) increased with increasing strain rate. The different trends in the dependence of work-hardening rate on strain rate was attributed to the difference in the ease of cross-slip (and, hence, the ease of dynamic recovery) in Cu and Cu-Al alloys.

391 citations

Journal ArticleDOI
TL;DR: In this article, the deformation behavior of Ti−6Al−4V at temperatures between 76 and 495 K, strain rates between 0.001 and 3000 s−1, and compressive strains to 0.3 has been investigated.
Abstract: The deformation behavior of Ti−6Al−4V at temperatures between 76 and 495 K, strain rates between 0.001 and 3000 s−1, and compressive strains to 0.3 has been investigated. Measurements of yield stress as a function of test temperature, strain rate, and prestrain history are analyzed according to the model proposed by Kocks and Mecking. The mechanical threshold stress (flow stress at 0 K) is used as an internal state variable, and the contributions to the mechanical threshold stress from the various strengthening mechanisms present in this alloy are analyzed. Transmission electron microscopy (TEM) is used to correlate deformation substructure evolution with the constitutive behavior. The deformation substructure of Ti-6-4 is observed to consist of planar slip in the α grains at quasistatic strain rates. At high strain rates, deformation twinning is observed in addition to planar slip. Increasing the temperature to 495 K is seen to alter the deformation mode to more random slip; the effect of this on the proposed deformation model is discussed.

267 citations

Journal ArticleDOI
TL;DR: The influence of increasing strain rate on the mechanical behavior and deformation substructures in metals and alloys that deform predominately by slip is very similar to that seen following quasi-static deformation at increasingly lower temperatures or due to a decrease in stacking-fault energy (γsf) as mentioned in this paper.
Abstract: The influence of increasing strain rate on the mechanical behavior and deformation substructures in metals and alloys that deform predominately by slip is very similar to that seen following quasi-static deformation at increasingly lower temperatures or due to a decrease in stacking-fault energy (γsf). Deformation at higher rates (a) produces more uniform dislocation distributions for the same amount of strain, (b) hinders the formation of discrete dislocation cells, (c) decreases cell size, and (d) increases misorientation, with more dislocations trapped within cell interiors. The suppression of thermally activated dislocation processes in this regime can lead to stresses high enough to activate and grow deformation twins even in high-stacking-fault-energy, face-centered-cubic metals. In this review, examples of the high-strain-rate mechanical behavior and the deformation substructure evolution observed in a range of materials following high and shock-loading strain rates are presented and compared with ...

261 citations

Journal ArticleDOI
TL;DR: In this article, the effects of strain rate, temperature, and tungsten alloying on the yield stress and the strainhardening behavior of tantalum were investigated, and the results substantiate the applicability of these models for describing the high strain-rate deformation of Ta and Ta-W alloys.
Abstract: The effects of strain rate, temperature, and tungsten alloying on the yield stress and the strainhardening behavior of tantalum were investigated The yield and flow stresses of unalloyed Ta and tantalum-tungsten alloys were found to exhibit very high rate sensitivities, while the hardening rates in Ta and Ta-W alloys were found to be insensitive to strain rate and temperature at lower temperatures or at higher strain rates This behavior is consistent with the observation that overcoming the intrinsic Peierls stress is shown to be the rate-controlling mechanism in these materials at low temperatures The dependence of yield stress on temperature and strain rate was found to decrease, while the strain-hardening rate increased with tungsten alloying content The mechanical threshold stress (MTS) model was adopted to model the stress-strain behavior of unalloyed Ta and the Ta-W alloys Parameters for the constitutive relations for Ta and the Ta-W alloys were derived for the MTS model, the Johnson—Cook (JC), and the Zerilli-Armstrong (ZA) models The results of this study substantiate the applicability of these models for describing the high strain-rate deformation of Ta and Ta-W alloys The JC and ZA models, however, due to their use of a power strain-hardening law, were found to yield constitutive relations for Ta and Ta-W alloys that are strongly dependent on the range of strains for which the models were optimized

228 citations

Journal ArticleDOI
TL;DR: In this paper, synthetic foams were fabricated by liquid metal infiltration of commercially pure and 7075 aluminum into preforms of hollow ceramic microspheres, which exhibited peak strength during quasi-static compression ranging from −100 to −230 MPa, while dynamic compression loading showed a 10-30% increase in peak strength magnitude, with strain rate sensitivities similar to those of aluminum-matrix composite materials.
Abstract: Syntactic foams were fabricated by liquid metal infiltration of commercially pure and 7075 aluminum into preforms of hollow ceramic microspheres. The foams exhibited peak strengths during quasi-static compression ranging from −100 to −230 MPa, while dynamic compression loading showed a 10–30% increase in peak strength magnitude, with strain rate sensitivities similar to those of aluminum–matrix composite materials. X-ray tomographic investigation of the post-compression loaded foam microstructures revealed sharp differences in deformation modes, with the unalloyed-Al foam failing initially by matrix deformation, while the alloy–matrix foams failed more abruptly through the formation of sharp crush bands oriented at about 45° to the compression axis. These foams displayed pronounced energy-absorbing capabilities, suggesting their potential use in packaging applications or for impact protection; proper tailoring of matrix and microsphere strengths would result in optimized syntactic foam properties.

212 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal Article
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

Journal ArticleDOI
TL;DR: In this article, an equiatomic CoCrFeMnNi high-entropy alloy, which crystallizes in the face-centered cubic (fcc) crystal structure, was produced by arc melting and drop casting.

2,181 citations

Journal ArticleDOI
17 Apr 2009-Science
TL;DR: An approach to optimize strength and ductility is outlined by identifying three essential structural characteristics for boundaries: coherency with surrounding matrix, thermal and mechanical stability, and smallest feature size finer than 100 nanometers.
Abstract: [Lu, K.; Lu, L.] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China. [Lu, L.; Suresh, S.] MIT, Sch Engn, Cambridge, MA 02139 USA.;Lu, K (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China;lu@imr.ac.cn ssuresh@mit.edu

1,812 citations