scispace - formally typeset
Search or ask a question
Author

George Vayakis

Bio: George Vayakis is an academic researcher from ITER. The author has contributed to research in topics: Divertor & Hall effect sensor. The author has an hindex of 14, co-authored 128 publications receiving 1097 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors describe the requirements for high reliability in the systems (diagnostics) that provide the measurements in the ITER environment, which is similar to those made on the present-day large tokamaks while the specification of the measurements will be more stringent.
Abstract: In order to support the operation of ITER and the planned experimental programme an extensive set of plasma and first wall measurements will be required. The number and type of required measurements will be similar to those made on the present-day large tokamaks while the specification of the measurements—time and spatial resolutions, etc—will in some cases be more stringent. Many of the measurements will be used in the real time control of the plasma driving a requirement for very high reliability in the systems (diagnostics) that provide the measurements. The implementation of diagnostic systems on ITER is a substantial challenge. Because of the harsh environment (high levels of neutron and gamma fluxes, neutron heating, particle bombardment) diagnostic system selection and design has to cope with a range of phenomena not previously encountered in diagnostic design. Extensive design and R&D is needed to prepare the systems. In some cases the environmental difficulties are so severe that new diagnostic techniques are required. a Author to whom any correspondence should be addressed.

309 citations

Journal ArticleDOI
TL;DR: The ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019-2020, and tested the technical and procedural preparation for safe operation with tritium as discussed by the authors .
Abstract: The JET 2019–2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019–2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (α) physics in the coming D–T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D–T benefited from the highest D–D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER.

33 citations

Journal ArticleDOI
TL;DR: ITER is a critical step in the development of fusion energy: its role is to confirm the feasibility of exploiting magnetic confinement fusion for the production of energy for peaceful purposes by providing an integrated demonstration of the physics and technology required for a fusion power plant as mentioned in this paper.
Abstract: ITER is a critical step in the development of fusion energy: its role is to confirm the feasibility of exploiting magnetic confinement fusion for the production of energy for peaceful purposes by providing an integrated demonstration of the physics and technology required for a fusion power plant. Rapid progress is being made in project construction, and the facility is now taking shape at St-Paul-lez-Durance in southern France. In the course of designing and manufacturing of the systems making up the ITER tokamak and the ITER facility, extensive ground-breaking R&D has been implemented by the ITER partners across a wide range of technology and science areas which underpin the achievement of the project’s engineering and fusion plasma performance requirements. Significant developments have been made in the production of high performance Nb3Sn superconducting strand and in magnet technologies supporting the construction of the largest superconducting magnets produced to date. High heat flux plasma facing components have been fabricated which are capable of sustaining quasi-stationary heat loads of up to 10 MW m−2 and transient loads of up to 20 MW m−2. Fusion nuclear technologies such as remote maintenance and tritium breeding have received specific emphasis within the ITER R&D program, since extensive deployment of these technologies is foreseen. Diagnostic systems face particular challenges in the ITER environment, and wide-ranging R&D activities have been implemented to develop novel solutions to ensure an adequate measurement capability in ITER DT operation. Routine and reliable operation in ITER will require a highly effective capability for the detection, avoidance and mitigation of disruptions, and significant science and technology R&D is underway to establish this capability. The overall integration of the control requirements for the ITER plasma and facility, in particular during burning plasma operation, has presented new challenges for fusion control systems, including the need for robust safety and hardware (investment) protection. These challenges are being addressed via the implementation of the most extensive and ambitious control system to date. The paper introduces the ITER project and its major goals in relation to the development of fusion energy and provides an overview of key innovations which have been made in these areas of fusion technology and science in support of ITER construction.

33 citations

Journal ArticleDOI
TL;DR: In this paper, the results of in situ measurements of noninductive voltages developed across prototype International Thermonuclear Experimental Reactor (ITER) magnetic coils performed at the Japan Materials Test Reactor are summarized.
Abstract: This report summarizes the results of in situ measurements of noninductive voltages developed across prototype International Thermonuclear Experimental Reactor (ITER) magnetic coils performed at the Japan Materials Test Reactor. The voltages appear to be mainly thermoelectric in origin, with the thermal sensitivity developing gradually through irradiation and the thermal gradients supplied by nuclear heating. Possible mechanisms and circuits within the coils that can contribute to this radiation-induced thermoelectric sensitivity are described, and schemes to improve the ITER coil design are outlined.

32 citations

Journal ArticleDOI
TL;DR: In this article, the evolution of the energy, momentum and particle transport through the L-H transition in JET NBI heated discharges is studied. But it is found that all of the transport coefficients drop at the transition over a wide radial region and not just in the edge region as was previously thought to be the case.
Abstract: The evolution of the energy, momentum and particle transport through the L-H transition are determined in JET NBI heated discharges. Both normal and periodic L-H transitions are studied. It is found that all of the transport coefficients drop at the transition over a wide radial region and not just in the edge region as was previously thought to be the case. Indeed it is shown by two different modelling techniques that the conventional model in which the transport changes in a narrow region at the edge cannot explain the time behaviour of the electron temperature. Measurements of the fluctuation level by reflectometry also show a very fast drop over a wide radial region

32 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The understanding and predictive capability of transport physics and plasma confinement is reviewed from the perspective of achieving reactor-scale burning plasmas in the ITER tokamak, for both core and edge plasma regions.
Abstract: The understanding and predictive capability of transport physics and plasma confinement is reviewed from the perspective of achieving reactor-scale burning plasmas in the ITER tokamak, for both core and edge plasma regions. Very considerable progress has been made in understanding, controlling and predicting tokamak transport across a wide variety of plasma conditions and regimes since the publication of the ITER Physics Basis (IPB) document (1999 Nucl. Fusion 39 2137-2664). Major areas of progress considered here follow. (1) Substantial improvement in the physics content, capability and reliability of transport simulation and modelling codes, leading to much increased theory/experiment interaction as these codes are increasingly used to interpret and predict experiment. (2) Remarkable progress has been made in developing and understanding regimes of improved core confinement. Internal transport barriers and other forms of reduced core transport are now routinely obtained in all the leading tokamak devices worldwide. (3) The importance of controlling the H-mode edge pedestal is now generally recognized. Substantial progress has been made in extending high confinement H-mode operation to the Greenwald density, the demonstration of Type I ELM mitigation and control techniques and systematic explanation of Type I ELM stability. Theory-based predictive capability has also shown progress by integrating the plasma and neutral transport with MHD stability. (4) Transport projections to ITER are now made using three complementary approaches: empirical or global scaling, theory-based transport modelling and dimensionless parameter scaling (previously, empirical scaling was the dominant approach). For the ITER base case or the reference scenario of conventional ELMy H-mode operation, all three techniques predict that ITER will have sufficient confinement to meet its design target of Q = 10 operation, within similar uncertainties.

798 citations

Journal ArticleDOI
TL;DR: This review focuses on the advances of IRT as a non-contact and non-invasive condition monitoring tool for machineries, equipment and processes.

697 citations

Journal ArticleDOI
TL;DR: In this article, the effects of radiation on silica-based optical fibers are discussed and the main results regarding the fiber vulnerability and hardening to radiative constraints associated with several facilities such as Megajoule class lasers, ITER, LHC, nuclear power plants or with space applications.
Abstract: In this review paper, we present radiation effects on silica-based optical fibers. We first describe the mechanisms inducing microscopic and macroscopic changes under irradiation: radiation-induced attenuation, radiation-induced emission and compaction. We then discuss the influence of various parameters related to the optical fiber, to the harsh environments and to the fiber-based applications on the amplitudes and kinetics of these changes. Then, we focus on advances obtained over the last years. We summarize the main results regarding the fiber vulnerability and hardening to radiative constraints associated with several facilities such as Megajoule class lasers, ITER, LHC, nuclear power plants or with space applications. Based on the experience gained during these projects, we suggest some of the challenges that will have to be overcome in the near future to allow a deeper integration of fibers and fiber-based sensors in radiative environments.

365 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the physics of diveror in tokamaks from an experimental point of view, although where possible simple analytic modelling is included, and provided a framework for comparison of the experimental results with simply derived expectations.
Abstract: The physics of divertors in tokamaks is reviewed, primarily from an experimental point of view, although where possible simple analytic modelling is included. The paper covers the four main subject areas at issue in divertor research: (1) the wide dispersal of plasma power exhausted from the main plasma, (2) the production of sufficiently high gas pressures in the vicinity of pump ducts to enable the removal of fuel and helium (`ash') gas from the system, (3) the elimination or reduction of impurity production and (4) the screening of impurities produced, or intentionally added, at the plasma boundary from the plasma core. A simple analytic model, the `two-point' model, is introduced early in the paper and provides a framework for comparison of the experimental results, drawn from many machines, with simply derived expectations. Conclusions regarding the direction of future research priorities are made.

362 citations

Journal ArticleDOI
TL;DR: A review of zonal flow experiments is presented in this article, with a brief presentation of the current state of the art, diagnostics and data processing techniques for turbulence and zonal flows and the peripheral issues of ZFL physics.
Abstract: The present status of zonal flow experiments is reviewed with the historical process to attain the concept of zonal flows, which provides a new framework for understanding turbulence and transport in toroidal plasmas. The existence of zonal flows is experimentally confirmed to present a new paradigm of plasma turbulence. The paper presents contemporary experiments on zonal flows as major topics with a brief presentation of the zonal flow theories, the diagnostics and data processing techniques for turbulence and zonal flows and the peripheral issues of zonal flow physics. The accumulated experimental results introduced in this review include identification of zonal flows (both stationary zonal flows and geodesic acoustic modes), nonlinear interactions between zonal flows and turbulence, quantification of turbulent Reynolds stress, flow dynamics, energy transfer dynamics between turbulent wave components and the effects of zonal flows on plasma transport. These results have given rise to a new paradigm, namely, that the plasma turbulence is a system of zonal flows and drift waves, with an emphasis on the interaction between the disparate scale structures, e.g. zonal flows (mesoscale) and turbulence (micro-scale).

344 citations