scispace - formally typeset
Search or ask a question
Author

George W. Housner

Bio: George W. Housner is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Peak ground acceleration & Earthquake engineering. The author has an hindex of 39, co-authored 103 publications receiving 7787 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide a concise point of departure for researchers and practitioners alike wishing to assess the current state of the art in the control and monitoring of civil engineering structures, and provide a link between structural control and other fields of control theory.
Abstract: This tutorial/survey paper: (1) provides a concise point of departure for researchers and practitioners alike wishing to assess the current state of the art in the control and monitoring of civil engineering structures; and (2) provides a link between structural control and other fields of control theory, pointing out both differences and similarities, and points out where future research and application efforts are likely to prove fruitful. The paper consists of the following sections: section 1 is an introduction; section 2 deals with passive energy dissipation; section 3 deals with active control; section 4 deals with hybrid and semiactive control systems; section 5 discusses sensors for structural control; section 6 deals with smart material systems; section 7 deals with health monitoring and damage detection; and section 8 deals with research needs. An extensive list of references is provided in the references section.

1,883 citations

Journal ArticleDOI
TL;DR: In this article, an analysis is made of the rocking motion of structures of inverted pendulum type during the Chilean earthquakes of May, 1960, and it is shown that there is a scale effect which makes tall slender structures more stable against overturning than might have been expected.
Abstract: During the Chilean earthquakes of May, 1960, a number of tall, slender structures survived the ground shaking whereas more stable appearing structures were severely damaged. An analysis is made of the rocking motion of structures of inverted pendulum type. It is shown that there is a scale effect which makes tall slender structures more stable against overturning than might have been expected, and, therefore, the survival of such structures during earthquakes is not surprising.

1,237 citations

Journal ArticleDOI
TL;DR: A simplified dynamic analysis is indicated for the response of elevated water tanks to earthquake ground motion.
Abstract: During the Chilean earthquakes of May, 1960, a number of large elevated water tanks were severely damaged whereas others survived without damage. An analysis of the dynamic behavior of such tanks must take into account the motion of the water relative to the tank as well as the motion of the tank relative to the ground. Some simple expressions are given for the pertinent dynamic properties of tanks with free water surface. A simplified dynamic analysis is indicated for the response of elevated water tanks to earthquake ground motion.

586 citations

Journal ArticleDOI
TL;DR: In this paper, an analysis of the hydrodynamic pressures developed when a fluid container is subjected to horizontal accelerations is presented, and simplified formulas are given for containers having twofold symmetry, for dams with sloping faces and for flexible retaining walls.
Abstract: An analysis is presented of the hydrodynamic pressures developed when a fluid container is subjected to horizontal accelerations. Simplified formulas are given for containers having twofold symmetry, for dams with sloping faces, and for flexible retaining walls. The analysis includes both impulsive and convective fluid pressures.

535 citations

Journal ArticleDOI
TL;DR: In this article, response spectrum curves are used to describe the behavior of earthquake and period and damping of structure, high elastic stresses are developed during strong ground motion; type of limit design is indicated.
Abstract: Behavior is described by response spectrum curves which show effect of size and distance of earthquake and period and damping of structure; high elastic stresses are developed during strong ground motion; type of limit design is indicated.

392 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, an earthquake model is derived by considering the effective stress available to accelerate the sides of the fault, and the model describes near and far-field displacement-time functions and spectra and includes the effect of fractional stress drop.
Abstract: An earthquake model is derived by considering the effective stress available to accelerate the sides of the fault. The model describes near- and far-field displacement-time functions and spectra and includes the effect of fractional stress drop. It successfully explains the near- and far-field spectra observed for earthquakes and indicates that effective stresses are of the order of 100 bars. For this stress, the estimated upper limit of near-fault particle velocity is 100 cm/sec, and the estimated upper limit for accelerations is approximately 2g at 10 Hz and proportionally lower for lower frequencies. The near field displacement u is approximately given by u(t) = (σ/μ) βr(1 - e−t/r) where. σ is the effective stress, μ is the rigidity, β is the shear wave velocity, and τ is of the order of the dimension of the fault divided by the shear-wave velocity. The corresponding spectrum is Ω(ω)=σβμ1ω(ω2+τ−2)1/2(1) The rms average far-field spectrum is given by 〈 Ω(ω) 〉=〈 Rθϕ 〉σβμrRF(e)1ω2+α2(2) where 〈Rθϕ〉 is the rms average of the radiation pattern; r is the radius of an equivalent circular dislocation surface; R is the distance; F(e) = {[2 – 2e][1 – cos (1.21 eω/α)] +e2}1/2; e is the fraction of stress drop; and α = 2.21 β/r. The rms spectrum falls off as (ω/α)−2 at very high frequencies. For values of ω/α between 1 and 10 the rms spectrum falls off as (ω/α)−1 for e < ∼0.1. At low frequencies the spectrum reduces to the spectrum for a double-couple point source of appropriate moment. Effective stress, stress drop and source dimensions may be estimated by comparing observed seismic spectra with the theoretical spectra.

4,527 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce a method for the evaluation of the seismic risk at the site of an engineering project, in terms of a ground motion parameter (such as peak acceleration) versus average return period.
Abstract: This paper introduces a method for the evaluation of the seismic risk at the site of an engineering project. The results are in terms of a ground motion parameter (such as peak acceleration) versus average return period. The method incorporates the influence of all potential sources of earthquakes and the average activity rates assigned to them. Arbitrary geographical relationships between the site and potential point, line, or areal sources can be modeled with computational ease. In the range of interest, the derived distributions of maximum annual ground motions are in the form of Type I or Type II extreme value distributions, if the more commonly assumed magnitude distribution and attenuation laws are used.

3,081 citations

Journal ArticleDOI
TL;DR: In this article, a model for controllable fluid dampers is proposed that can effectively portray the behavior of a typical magnetorheological (MR) damper and compared with experimental results for a prototype damper.
Abstract: Semiactive control devices have received significant attention in recent years because they offer the adaptability of active control devices without requiring the associated large power sources. Magnetorheological (MR) dampers are semiactive control devices that use MR fluids to produce controllable dampers. They potentially offer highly reliable operation and can be viewed as fail-safe in that they become passive dampers should the control hardware malfunction. To develop control algorithms that take full advantage of the unique features of the MR damper, models must be developed that can adequately characterize the damper's intrinsic nonlinear behavior. Following a review of several idealized mechanical models for controllable fluid dampers, a new model is proposed that can effectively portray the behavior of a typical MR damper. Comparison with experimental results for a prototype damper indicates that the model is accurate over a wide range of operating conditions and is adequate for control design an...

1,897 citations

Journal Article
TL;DR: In this paper, two major figures in adaptive control provide a wealth of material for researchers, practitioners, and students to enhance their work through the information on many new theoretical developments, and can be used by mathematical control theory specialists to adapt their research to practical needs.
Abstract: This book, written by two major figures in adaptive control, provides a wealth of material for researchers, practitioners, and students. While some researchers in adaptive control may note the absence of a particular topic, the book‘s scope represents a high-gain instrument. It can be used by designers of control systems to enhance their work through the information on many new theoretical developments, and can be used by mathematical control theory specialists to adapt their research to practical needs. The book is strongly recommended to anyone interested in adaptive control.

1,814 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented an efficient method for digital simulation of general homogeneous processes as a series of cosine functions with weighted amplitudes, almost evenly spaced frequencies, and random phase angles.

1,460 citations